Abstract
The wild-type strain Streptomyces lividans 66 is resistant against the steroid-like antibiotic fusidic acid. Comparative studies of the wild-type strain and a fusidic acid-sensitive mutant allowed the identification of an extracellular enzyme which inactivates fusidic acid. With the help of a combination of ultrafiltration and chromatographies with Phenyl-Sepharose and an anion exchanger, the enzyme was highly purified. Its apparent molecular mass is 48 kDa, its optimal activity ranges between 45 and 55 degrees C, and its optimal pH is 6.0 to 9.0. It is stimulated by neither monovalent nor divalent ions. The enzyme acts as a specific esterase which removes the acetyl group at C-16 from fusidic acid. The resulting intermediate is unstable, and spontaneous lactonization between C-21 and C-16 occurs rapidly.
Full Text
The Full Text of this article is available as a PDF (300.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brzezowska E., Dmochowska-Gładysz J., Kołek T., Nobilec E. Biotransformation--XXXIV. Metabolism of testosterone esters in fungi cultures. J Steroid Biochem Mol Biol. 1993 Aug;46(2):259–263. doi: 10.1016/0960-0760(93)90302-d. [DOI] [PubMed] [Google Scholar]
- Chopra I. Mechanisms of resistance to fusidic acid in Staphylococcus aureus. J Gen Microbiol. 1976 Oct;96(2):229–238. doi: 10.1099/00221287-96-2-229. [DOI] [PubMed] [Google Scholar]
- Godtfredsen W. O., Von Daehne W., Tybring L., Vangedal S. Fusidic acid derivatives. I. Relationship between structure and antibacterial activity. J Med Chem. 1966 Jan;9(1):15–22. doi: 10.1021/jm00319a004. [DOI] [PubMed] [Google Scholar]
- Johanson U., Hughes D. Fusidic acid-resistant mutants define three regions in elongation factor G of Salmonella typhimurium. Gene. 1994 May 27;143(1):55–59. doi: 10.1016/0378-1119(94)90604-1. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Malkin M., Lipmann F. Fusidic acid: inhibition of factor T2 in reticulocyte protein synthesis. Science. 1969 Apr 4;164(3875):71–72. doi: 10.1126/science.164.3875.71. [DOI] [PubMed] [Google Scholar]
- Tanaka N., Kawano G., Kinoshita T. Chromosomal location of a fusidic acid resistant marker in Escherichia coli. Biochem Biophys Res Commun. 1971 Feb 5;42(3):564–567. doi: 10.1016/0006-291x(71)90408-6. [DOI] [PubMed] [Google Scholar]
- Tanaka N., Kinoshita T., Masukawa H. Mechanism of inhibition of protein synthesis by fusidic acid and related steroidal antibiotics. J Biochem. 1969 Mar;65(3):459–464. doi: 10.1093/oxfordjournals.jbchem.a129034. [DOI] [PubMed] [Google Scholar]
- VANDERHAEGHE H., VANDIJCK P., DESOMER P. IDENTITY OF RAMYCIN WITH FUSIDIC ACID. Nature. 1965 Feb 13;205:710–711. doi: 10.1038/205710a0. [DOI] [PubMed] [Google Scholar]
- Waksman S. A., Horning E. S., Spencer E. L. Two Antagonistic Fungi, Aspergillus fumigatus and Aspergillus clavatus, and Their Antibiotic Substances. J Bacteriol. 1943 Mar;45(3):233–248. doi: 10.1128/jb.45.3.233-248.1943. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von HOFSTEN Deoxyribonucleic acid content of morphologically different cell-types of Ophiostoma multiannuatum. Nature. 1962 Mar 3;193:897–898. doi: 10.1038/193897a0. [DOI] [PubMed] [Google Scholar]
- von der Haar B., Rosenberg D., Dittrich W., Schrempf H. Inactivation of fusidic acid by resistant Streptomyces strains. J Antibiot (Tokyo) 1991 Jul;44(7):785–792. doi: 10.7164/antibiotics.44.785. [DOI] [PubMed] [Google Scholar]