Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Jan;177(1):212–221. doi: 10.1128/jb.177.1.212-221.1995

The hsp70 gene family of Neurospora crassa: cloning, sequence analysis, expression, and genetic mapping of the major stress-inducible member.

M Kapoor 1, C A Curle 1, C Runham 1
PMCID: PMC176575  PMID: 7798134

Abstract

The gene encoding the major heat shock-inducible member of the HSP70 family of Neurospora crassa was cloned and characterized. The 5' nontranscribed region shows the presence of consensus sequence motifs resembling the classical heat shock elements found in many heat shock-responsive eukaryotic promoters, as well as metal-responsive-element sequences. The coding region of the gene contains four introns with boundaries and internal consensus motifs typical of genes of filamentous fungi. None of the other stress-inducible hsp70 genes of fungal origin have, so far, been reported to contain introns. The sequence adjoining the transcriptional initiation zone shows the presence of prominent CT-rich stretches, characteristic of highly expressed fungal genes. The deduced amino acid sequence corresponds to a 646-residue polypeptide, with a calculated molecular mass of 70,561 Da and an average pI of 6.01, exhibiting strong sequence homology with many other eukaryotic HSP70s, with typical HSP70 family signatures 1 and 2 and a bipartite nuclear targeting sequence. Experiments with primer extension revealed the presence of one minor and two major transcriptional start sites. This gene, designated hsps-1, was mapped to a locus on the left arm of linkage group II, in close proximity to the AR-30 translocation breakpoint.

Full Text

The Full Text of this article is available as a PDF (781.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldauf S. L., Palmer J. D. Animals and fungi are each other's closest relatives: congruent evidence from multiple proteins. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11558–11562. doi: 10.1073/pnas.90.24.11558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boorstein W. R., Ziegelhoffer T., Craig E. A. Molecular evolution of the HSP70 multigene family. J Mol Evol. 1994 Jan;38(1):1–17. doi: 10.1007/BF00175490. [DOI] [PubMed] [Google Scholar]
  4. Chow C. M., Rajbhandary U. L. Regulation of the nuclear genes encoding the cytoplasmic and mitochondrial leucyl-tRNA synthetases of Neurospora crassa. Mol Cell Biol. 1989 Nov;9(11):4645–4652. doi: 10.1128/mcb.9.11.4645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Craig E. A., Gambill B. D., Nelson R. J. Heat shock proteins: molecular chaperones of protein biogenesis. Microbiol Rev. 1993 Jun;57(2):402–414. doi: 10.1128/mr.57.2.402-414.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Curle C. A., Kapoor M. Expression of heat shock genes of Neurospora crassa: effect of hyperthermia and other stresses on mRNA levels. Biochem Cell Biol. 1988 Feb;66(2):81–92. doi: 10.1139/o88-011. [DOI] [PubMed] [Google Scholar]
  7. Denhardt D. T. A membrane-filter technique for the detection of complementary DNA. Biochem Biophys Res Commun. 1966 Jun 13;23(5):641–646. doi: 10.1016/0006-291x(66)90447-5. [DOI] [PubMed] [Google Scholar]
  8. Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
  9. Grunstein M., Hogness D. S. Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3961–3965. doi: 10.1073/pnas.72.10.3961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hendrick J. P., Hartl F. U. Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem. 1993;62:349–384. doi: 10.1146/annurev.bi.62.070193.002025. [DOI] [PubMed] [Google Scholar]
  11. Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene. 1984 Jun;28(3):351–359. doi: 10.1016/0378-1119(84)90153-7. [DOI] [PubMed] [Google Scholar]
  12. Holmgren R., Livak K., Morimoto R., Freund R., Meselson M. Studies of cloned sequences from four Drosophila heat shock loci. Cell. 1979 Dec;18(4):1359–1370. doi: 10.1016/0092-8674(79)90246-0. [DOI] [PubMed] [Google Scholar]
  13. Judelson H. S., Michelmore R. W. Structure and expression of a gene encoding heat-shock protein Hsp70 from the Oomycete fungus Bremia lactucae. Gene. 1989 Jul 15;79(2):207–217. doi: 10.1016/0378-1119(89)90203-5. [DOI] [PubMed] [Google Scholar]
  14. Kapoor M., Sreenivasan G. M., Goel N., Lewis J. Development of thermotolerance in Neurospora crassa by heat shock and other stresses eliciting peroxidase induction. J Bacteriol. 1990 May;172(5):2798–2801. doi: 10.1128/jb.172.5.2798-2801.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kapoor M., Vijayaraghavan Y., Kadonaga R., LaRue K. E. NAD(+)-specific glutamate dehydrogenase of Neurospora crassa: cloning, complete nucleotide sequence, and gene mapping. Biochem Cell Biol. 1993 Mar-Apr;71(3-4):205–219. doi: 10.1139/o93-032. [DOI] [PubMed] [Google Scholar]
  16. Kinnaird J. H., Fincham J. R. The complete nucleotide sequence of the Neurospora crassa am (NADP-specific glutamate dehydrogenase) gene. Gene. 1983 Dec;26(2-3):253–260. doi: 10.1016/0378-1119(83)90195-6. [DOI] [PubMed] [Google Scholar]
  17. Kozak M. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res. 1984 Jan 25;12(2):857–872. doi: 10.1093/nar/12.2.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lee M. G., Atkinson B. L., Giannini S. H., Van der Ploeg L. H. Structure and expression of the hsp 70 gene family of Leishmania major. Nucleic Acids Res. 1988 Oct 25;16(20):9567–9585. doi: 10.1093/nar/16.20.9567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lindquist S. The heat-shock response. Annu Rev Biochem. 1986;55:1151–1191. doi: 10.1146/annurev.bi.55.070186.005443. [DOI] [PubMed] [Google Scholar]
  20. Livak K. J., Freund R., Schweber M., Wensink P. C., Meselson M. Sequence organization and transcription at two heat shock loci in Drosophila. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5613–5617. doi: 10.1073/pnas.75.11.5613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. LéJohn H. B., Cameron L. E., Yang B., MacBeath G., Barker D. S., Williams S. A. Cloning and analysis of a constitutive heat shock (cognate) protein 70 gene inducible by L-glutamine. J Biol Chem. 1994 Feb 11;269(6):4513–4522. [PubMed] [Google Scholar]
  22. Machwe A., Kapoor M. Identification of the heat shock protein of Neurospora crassa corresponding to the stress-inducible peroxidase. Biochem Biophys Res Commun. 1993 Oct 29;196(2):692–698. doi: 10.1006/bbrc.1993.2305. [DOI] [PubMed] [Google Scholar]
  23. McNally M. T., Free S. J. Isolation and characterization of a Neurospora glucose-repressible gene. Curr Genet. 1988 Dec;14(6):545–551. doi: 10.1007/BF00434079. [DOI] [PubMed] [Google Scholar]
  24. Pelham H. R., Bienz M. A synthetic heat-shock promoter element confers heat-inducibility on the herpes simplex virus thymidine kinase gene. EMBO J. 1982;1(11):1473–1477. doi: 10.1002/j.1460-2075.1982.tb01340.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Requena J. M., López M. C., Jimenez-Ruiz A., de la Torre J. C., Alonso C. A head-to-tail tandem organization of hsp70 genes in Trypanosoma cruzi. Nucleic Acids Res. 1988 Feb 25;16(4):1393–1406. doi: 10.1093/nar/16.4.1393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rochester D. E., Winer J. A., Shah D. M. The structure and expression of maize genes encoding the major heat shock protein, hsp70. EMBO J. 1986 Mar;5(3):451–458. doi: 10.1002/j.1460-2075.1986.tb04233.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Roychowdhury H. S., MacAlister T. J., Costerton J. W., Kapoor M. Induction and intracellular localization of the 80-kilodalton heat-shock protein of Neurospora crassa. Biochem Cell Biol. 1992 Dec;70(12):1347–1355. doi: 10.1139/o92-183. [DOI] [PubMed] [Google Scholar]
  28. Roychowdhury H. S., Wong D., Kapoor M. hsp80 of Neurospora crassa: cDNA cloning, gene mapping, and studies of mRNA accumulation under stress. Biochem Cell Biol. 1992 Dec;70(12):1356–1367. doi: 10.1139/o92-184. [DOI] [PubMed] [Google Scholar]
  29. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schechtman M. G., Yanofsky C. Structure of the trifunctional trp-1 gene from Neurospora crassa and its aberrant expression in Escherichia coli. J Mol Appl Genet. 1983;2(1):83–99. [PubMed] [Google Scholar]
  31. Snutch T. P., Heschl M. F., Baillie D. L. The Caenorhabditis elegans hsp70 gene family: a molecular genetic characterization. Gene. 1988 Apr 29;64(2):241–255. doi: 10.1016/0378-1119(88)90339-3. [DOI] [PubMed] [Google Scholar]
  32. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  33. Vierula P. J., Kapoor M. NAD-specific glutamate dehydrogenase of Neurospora crassa. cDNA cloning and gene expression during derepression. J Biol Chem. 1989 Jan 15;264(2):1108–1114. [PubMed] [Google Scholar]
  34. Vollmer S. J., Yanofsky C. Efficient cloning of genes of Neurospora crassa. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4869–4873. doi: 10.1073/pnas.83.13.4869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Woudt L. P., Pastink A., Kempers-Veenstra A. E., Jansen A. E., Mager W. H., Planta R. J. The genes coding for histone H3 and H4 in Neurospora crassa are unique and contain intervening sequences. Nucleic Acids Res. 1983 Aug 25;11(16):5347–5360. doi: 10.1093/nar/11.16.5347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Yang Y. F., Tan-ariya P., Sharma Y. D., Kilejian A. The primary structure of a Plasmodium falciparum polypeptide related to heat shock proteins. Mol Biochem Parasitol. 1987 Nov;26(1-2):61–67. doi: 10.1016/0166-6851(87)90130-7. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES