Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Jan;177(1):229–234. doi: 10.1128/jb.177.1.229-234.1995

Purification and characterization of 6-chlorohydroxyquinol 1,2-dioxygenase from Streptomyces rochei 303: comparison with an analogous enzyme from Azotobacter sp. strain GP1.

O Zaborina 1, M Latus 1, J Eberspächer 1, L A Golovleva 1, F Lingens 1
PMCID: PMC176577  PMID: 7798136

Abstract

The enzyme which cleaves the benzene ring of 6-chlorohydroxyquinol was purified to apparent homogeneity from an extract of 2,4,6-trichlorophenol-grown cells of Streptomyces rochei 303. Like the analogous enzyme from Azotobacter sp. strain GP1, it exhibited a highly restricted substrate specificity and was able to cleave only 6-chlorohydroxyquinol and hydroxyquinol and not catechol, chlorinated catechols, or pyrogallol. No extradiol-cleaving activity was observed. In contrast to 6-chlorohydroxyquinol 1,2-dioxygenase from Azotobacter sp. strain GP1, the S. rochei enzyme had a distinct preference for 6-chlorohydroxyquinol over hydroxyquinol (kcat/Km = 1.2 and 0.57 s-1.microM-1, respectively). The enzyme from S. rochei appears to be a dimer of two identical 31-kDa subunits. It is a colored protein and was found to contain 1 mol of iron per mol of enzyme. The NH2-terminal amino acid sequences of 6-chlorohydroxyquinol 1,2-dioxygenase from S. rochei 303 and from Azotobacter sp. strain GP1 showed a high degree of similarity.

Full Text

The Full Text of this article is available as a PDF (228.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. J., Dagley S. Catabolism of aromatic acids in Trichosporon cutaneum. J Bacteriol. 1980 Feb;141(2):534–543. doi: 10.1128/jb.141.2.534-543.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Apajalahti J. H., Salkinoja-Salonen M. S. Complete dechlorination of tetrachlorohydroquinone by cell extracts of pentachlorophenol-induced Rhodococcus chlorophenolicus. J Bacteriol. 1987 Nov;169(11):5125–5130. doi: 10.1128/jb.169.11.5125-5130.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Broderick J. B., O'Halloran T. V. Overproduction, purification, and characterization of chlorocatechol dioxygenase, a non-heme iron dioxygenase with broad substrate tolerance. Biochemistry. 1991 Jul 23;30(29):7349–7358. doi: 10.1021/bi00243a040. [DOI] [PubMed] [Google Scholar]
  5. Chapman P. J., Ribbons D. W. Metabolism of resorcinylic compounds by bacteria: alternative pathways for resorcinol catabolism in Pseudomonas putida. J Bacteriol. 1976 Mar;125(3):985–998. doi: 10.1128/jb.125.3.985-998.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dorn E., Knackmuss H. J. Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of catechol. Biochem J. 1978 Jul 15;174(1):85–94. doi: 10.1042/bj1740085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dorn E., Knackmuss H. J. Chemical structure and biodegradability of halogenated aromatic compounds. Two catechol 1,2-dioxygenases from a 3-chlorobenzoate-grown pseudomonad. Biochem J. 1978 Jul 15;174(1):73–84. doi: 10.1042/bj1740073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gaal A., Neujahr H. Y. Metabolism of phenol and resorcinol in Trichosporon cutaneum. J Bacteriol. 1979 Jan;137(1):13–21. doi: 10.1128/jb.137.1.13-21.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Golovleva L. A., Zaborina O., Pertsova R., Baskunov B., Schurukhin Y., Kuzmin S. Degradation of polychlorinated phenols by Streptomyces rochei 303. Biodegradation. 1991;2(3):201–208. doi: 10.1007/BF00124494. [DOI] [PubMed] [Google Scholar]
  10. Häggblom M. Mechanisms of bacterial degradation and transformation of chlorinated monoaromatic compounds. J Basic Microbiol. 1990;30(2):115–141. doi: 10.1002/jobm.3620300214. [DOI] [PubMed] [Google Scholar]
  11. Karasevii Iu N., Ivoilov V. S. Podgotovitel'nyi metabolizm para-oksibenzoinoi kisloty u drozhzhei Candida tropicalis. Mikrobiologiia. 1977 Sep-Oct;46(5):846–856. [PubMed] [Google Scholar]
  12. Kaschabek S. R., Reineke W. Maleylacetate reductase of Pseudomonas sp. strain B13: dechlorination of chloromaleylacetates, metabolites in the degradation of chloroaromatic compounds. Arch Microbiol. 1992;158(6):412–417. doi: 10.1007/BF00276301. [DOI] [PubMed] [Google Scholar]
  13. Knackmuss H. J., Hellwig M. Utilization and cooxidation of chlorinated phenols by Pseudomonas sp. B 13. Arch Microbiol. 1978 Apr 27;117(1):1–7. doi: 10.1007/BF00689343. [DOI] [PubMed] [Google Scholar]
  14. Li D. Y., Eberspächer J., Wagner B., Kuntzer J., Lingens F. Degradation of 2,4,6-trichlorophenol by Azotobacter sp. strain GP1. Appl Environ Microbiol. 1991 Jul;57(7):1920–1928. doi: 10.1128/aem.57.7.1920-1928.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rieble S., Joshi D. K., Gold M. H. Purification and characterization of a 1,2,4-trihydroxybenzene 1,2-dioxygenase from the basidiomycete Phanerochaete chrysosporium. J Bacteriol. 1994 Aug;176(16):4838–4844. doi: 10.1128/jb.176.16.4838-4844.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sangodkar U. M., Chapman P. J., Chakrabarty A. M. Cloning, physical mapping and expression of chromosomal genes specifying degradation of the herbicide 2,4,5-T by Pseudomonas cepacia AC1100. Gene. 1988 Nov 30;71(2):267–277. doi: 10.1016/0378-1119(88)90043-1. [DOI] [PubMed] [Google Scholar]
  17. Schlömann M., Ngai K. L., Ornston L. N., Knackmuss H. J. Dienelactone hydrolase from Pseudomonas cepacia. J Bacteriol. 1993 May;175(10):2994–3001. doi: 10.1128/jb.175.10.2994-3001.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schlömann M., Schmidt E., Knackmuss H. J. Different types of dienelactone hydrolase in 4-fluorobenzoate-utilizing bacteria. J Bacteriol. 1990 Sep;172(9):5112–5118. doi: 10.1128/jb.172.9.5112-5118.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  20. Seibert V., Stadler-Fritzsche K., Schlömann M. Purification and characterization of maleylacetate reductase from Alcaligenes eutrophus JMP134(pJP4). J Bacteriol. 1993 Nov;175(21):6745–6754. doi: 10.1128/jb.175.21.6745-6754.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sparnins V. L., Burbee D. G., Dagley S. Catabolism of L-tyrosine in Trichosporon cutaneum. J Bacteriol. 1979 May;138(2):425–430. doi: 10.1128/jb.138.2.425-430.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sze I. S., Dagley S. Properties of salicylate hydroxylase and hydroxyquinol 1,2-dioxygenase purified from Trichosporon cutaneum. J Bacteriol. 1984 Jul;159(1):353–359. doi: 10.1128/jb.159.1.353-359.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vollmer M. D., Stadler-Fritzsche K., Schlömann M. Conversion of 2-chloromaleylacetate in Alcaligenes eutrophus JMP134. Arch Microbiol. 1993;159(2):182–188. doi: 10.1007/BF00250280. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES