Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Jan;177(1):235–237. doi: 10.1128/jb.177.1.235-237.1995

Growth and buoyant density of Escherichia coli at very low osmolarities.

W W Baldwin 1, R Myer 1, T Kung 1, E Anderson 1, A L Koch 1
PMCID: PMC176578  PMID: 7798137

Abstract

The growth and buoyant densities of two closely related strains of Escherichia coli in M9-glucose medium that was diluted to produce osmolarities that varied from as low as 5 to 500 mosM were monitored. At 15 mosM, the lowest osmolarity at which buoyant density could be measured reproducibly in Percoll gradients, both ML3 and ML308 had a buoyant density of about 1.079 g/ml. As the osmolarity of the medium was increased, the buoyant density also increased linearly up to about 125 mosM, at which the buoyant density was 1.089 g/ml. From 150 up to 500 mosM, the buoyant density again increased linearly but with a different slope from that seen at the lower osmolarities. The buoyant density at 150 mosM was about 1.091 g/ml, and at 500 mosM it was 1.101 g/ml. Both strains of E. coli could be grown in M9 medium diluted 1:1 with water, with an osmolarity of 120 mosM, but neither strain grew in 1:2-diluted M9 if the cells were pregrown in undiluted M9. (Note: undiluted M9 as prepared here has an osmolarity of about 250 mosM.) However, if the cells were pregrown in 30% M9, about 75 mosM, they would then grow in M9 at 45 mosM and above but not below 40 mosM. To determine which constituent of M9 medium was being diluted to such a low level that it inhibited growth, diluted M9 was prepared with each constituent added back singly. From this study, it was determined that both Ca2+ and Mg2+ could stimulate growth below 40 mosM. With Ca2+ - and Mg2+ -supplemented diluted M9 and cells pregrown in 75 mosM M9, it was possible to grow ML308 in 15 mosM M9. Strain ML3 would only haltingly grow at 15 mosM. Four attempts were made to grow both ML3 and ML308 at 5 mosM. In three of the experiments, ML308 grew, while strain ML3 grew in one experiment. While our experiments were designed to effect variations in medium osmolarity by using NaCl as an osmotic agent, osmolarity and salinity were changed concurrently. Therefore, from this study, we believe that E. coli might be defined as an euryhalinic and/or euryosmotic bacterium because of its ability to grow in a wide range of salinities and osmolarities.

Full Text

The Full Text of this article is available as a PDF (167.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin W. W., Kirkish M. A., Koch A. L. A change in a single gene of Salmonella typhimurium can dramatically change its buoyant density. J Bacteriol. 1994 Aug;176(16):5001–5004. doi: 10.1128/jb.176.16.5001-5004.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baldwin W. W., Kubitschek H. E. Evidence for osmoregulation of cell growth and buoyant density in Escherichia coli. J Bacteriol. 1984 Jul;159(1):393–394. doi: 10.1128/jb.159.1.393-394.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beveridge T. J., Graham L. L. Surface layers of bacteria. Microbiol Rev. 1991 Dec;55(4):684–705. doi: 10.1128/mr.55.4.684-705.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cayley S., Lewis B. A., Guttman H. J., Record M. T., Jr Characterization of the cytoplasm of Escherichia coli K-12 as a function of external osmolarity. Implications for protein-DNA interactions in vivo. J Mol Biol. 1991 Nov 20;222(2):281–300. doi: 10.1016/0022-2836(91)90212-o. [DOI] [PubMed] [Google Scholar]
  5. Cayley S., Lewis B. A., Record M. T., Jr Origins of the osmoprotective properties of betaine and proline in Escherichia coli K-12. J Bacteriol. 1992 Mar;174(5):1586–1595. doi: 10.1128/jb.174.5.1586-1595.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Csonka L. N., Hanson A. D. Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol. 1991;45:569–606. doi: 10.1146/annurev.mi.45.100191.003033. [DOI] [PubMed] [Google Scholar]
  7. Epstein W., Schultz S. G. Cation transport in Escherichia coli. VI. K exchange. J Gen Physiol. 1966 Jan;49(3):469–481. doi: 10.1085/jgp.49.3.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kubitschek H. E., Baldwin W. W., Graetzer R. Buoyant density constancy during the cell cycle of Escherichia coli. J Bacteriol. 1983 Sep;155(3):1027–1032. doi: 10.1128/jb.155.3.1027-1032.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Le Rudulier D., Strom A. R., Dandekar A. M., Smith L. T., Valentine R. C. Molecular biology of osmoregulation. Science. 1984 Jun 8;224(4653):1064–1068. doi: 10.1126/science.224.4653.1064. [DOI] [PubMed] [Google Scholar]
  10. Mitchell P. Vectorial chemiosmotic processes. Annu Rev Biochem. 1977;46:996–1005. doi: 10.1146/annurev.bi.46.070177.005024. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES