Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Jan;177(2):320–325. doi: 10.1128/jb.177.2.320-325.1995

Maleylacetate reductase of Pseudomonas sp. strain B13: specificity of substrate conversion and halide elimination.

S R Kaschabek 1, W Reineke 1
PMCID: PMC176594  PMID: 7814320

Abstract

Maleylacetate reductase (EC 1.3.1.32) plays a major role in the degradation of chloroaromatic compounds by channelling maleylacetate and some chlorinated derivatives into the 3-oxoadipate pathway. Several substituted maleylacetates were prepared in situ by alkaline or enzymatic hydrolysis of dienelactones as the precursor. The conversion of these methyl-, chloro-, fluoro-, and bromo-substituted maleylacetates by malelacetate reductase from 3-chlorobenzoate-grown cells of Pseudomonas sp. strain B13 was studied. Two moles of NADH per mole of substrate was consumed for the conversion of maleylacetates which contain a halogen substituent in the 2 position. In contrast, only 1 mol of NADH was necessary to convert 1 mol of substrates without a halogen substituent in the 2 position. The conversion of 2-fluoro-, 2-chloro-, 2,3-dichloro-, 2,5-dichloro-, 2,3,5-trichloro-, 2-bromo-, 2,3-dibromo-, 2,5-dibromo-, 2-bromo-5-chloro-, 2-chloro-3-methyl-, and 2-chloro-5-methylmaleylacetate was accompanied by the elimination of halide from the 2 position and the temporary occurrence of the corresponding dehalogenated maleylacetate as an intermediate consuming the second mole equivalent of NADH. The properties of the halogen substituents influenced the affinity to the enzyme in the following manner. Km values increased with increasing van der Waals radii and with decreasing electronegativity of the halogen substituents (i.e., low steric hindrance and high electronegativity positively influenced the binding).The Km values obtained with 2-methyl-,3-methyl-, and 5-methylmaleylacetate showed that a methyl substituent negatively affected the affinity in the following order: 2 position >/ = 3 position >> 5 position. A reaction mechanism explaining the exclusive elimination of halogen substituents from the 2 position is proposed.

Full Text

The Full Text of this article is available as a PDF (217.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. J., Dagley S. Catabolism of aromatic acids in Trichosporon cutaneum. J Bacteriol. 1980 Feb;141(2):534–543. doi: 10.1128/jb.141.2.534-543.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Chapman P. J., Ribbons D. W. Metabolism of resorcinylic compounds by bacteria: alternative pathways for resorcinol catabolism in Pseudomonas putida. J Bacteriol. 1976 Mar;125(3):985–998. doi: 10.1128/jb.125.3.985-998.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dorn E., Hellwig M., Reineke W., Knackmuss H. J. Isolation and characterization of a 3-chlorobenzoate degrading pseudomonad. Arch Microbiol. 1974;99(1):61–70. doi: 10.1007/BF00696222. [DOI] [PubMed] [Google Scholar]
  5. Dorn E., Knackmuss H. J. Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of catechol. Biochem J. 1978 Jul 15;174(1):85–94. doi: 10.1042/bj1740085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gaal A. B., Neujahr H. Y. Maleylacetate reductase from Trichosporon cutaneum. Biochem J. 1980 Mar 1;185(3):783–786. doi: 10.1042/bj1850783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kaschabek S. R., Reineke W. Degradation of chloroaromatics: purification and characterization of maleylacetate reductase from Pseudomonas sp. strain B13. J Bacteriol. 1993 Oct;175(19):6075–6081. doi: 10.1128/jb.175.19.6075-6081.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kaschabek S. R., Reineke W. Maleylacetate reductase of Pseudomonas sp. strain B13: dechlorination of chloromaleylacetates, metabolites in the degradation of chloroaromatic compounds. Arch Microbiol. 1992;158(6):412–417. doi: 10.1007/BF00276301. [DOI] [PubMed] [Google Scholar]
  9. Schmidt E., Knackmuss H. J. Chemical structure and biodegradability of halogenated aromatic compounds. Conversion of chlorinated muconic acids into maleoylacetic acid. Biochem J. 1980 Oct 15;192(1):339–347. doi: 10.1042/bj1920339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Sedlmaier H., Tischer W., Rauschenbach P., Simon H. On the mechanism of 2-enoate reductase. Elimination of halogen hydracids from 3-halogeno-2-enoates during reduction with NADH. FEBS Lett. 1979 Apr 1;100(1):129–132. doi: 10.1016/0014-5793(79)81147-3. [DOI] [PubMed] [Google Scholar]
  11. Seibert V., Stadler-Fritzsche K., Schlömann M. Purification and characterization of maleylacetate reductase from Alcaligenes eutrophus JMP134(pJP4). J Bacteriol. 1993 Nov;175(21):6745–6754. doi: 10.1128/jb.175.21.6745-6754.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Tischer W., Bader J., Simon H. Purification and some properties of a hitherto-unknown enzyme reducing the carbon-carbon double bond of alpha, beta-unsaturated carboxylate anions. Eur J Biochem. 1979 Jun;97(1):103–112. doi: 10.1111/j.1432-1033.1979.tb13090.x. [DOI] [PubMed] [Google Scholar]
  13. Vollmer M. D., Stadler-Fritzsche K., Schlömann M. Conversion of 2-chloromaleylacetate in Alcaligenes eutrophus JMP134. Arch Microbiol. 1993;159(2):182–188. doi: 10.1007/BF00250280. [DOI] [PubMed] [Google Scholar]
  14. Watkinson I. A., Wilton D. C., Rahimtula A. D., Akhtar M. M. The substrate activation in some pyridine nucleotide linked enzymic reactions. The conversion of desmosterol into cholesterol. Eur J Biochem. 1971 Nov 11;23(1):1–6. doi: 10.1111/j.1432-1033.1971.tb01583.x. [DOI] [PubMed] [Google Scholar]
  15. Wilton D. C. Is a Schiff base involved in the mechanism of the delta4-3-oxo steroid 5alpha- or 5beta-reductases from mammalian liver? Biochem J. 1976 Jun 1;155(3):487–491. doi: 10.1042/bj1550487. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES