Abstract
Two D-glutamic acid biosynthetic activities, glutamate racemase and D-amino acid transaminase, have been described previously for bacteria. To date, no bacterial species has been reported to possess both activities. Genetic complementation studies using Escherichia coli WM335, a D-glutamic acid auxotroph, and cloned chromosomal DNA fragments from Staphylococcus haemolyticus revealed two distinct DNA fragments containing open reading frames which, when present, allowed growth on medium without exogenous D-glutamic acid. Amino acid sequences of the two open reading frames derived from the DNA nucleotide sequences indicated extensive identity with the amino acid sequence of Pediococcus pentosaceous glutamate racemase in one case and with that of the D-amino acid transaminase of Bacillus spp. in the second case. Enzymatic assays of lysates of E. coli WM335 strains containing either the cloned staphylococcal racemase or transminase verified the identities of these activities. Subsequent DNA hybridization experiments indicated that Staphylococcus aureus, in addition to S. haemolyticus, contained homologous chromosomal DNA for each of these genes. These data suggest that S. haemolyticus, and probably S. aureus, contains genes for two D-glutamic acid biosynthetic activities, a glutamate racemase (dga gene) and a D-amino acid transaminase (dat gene).
Full Text
The Full Text of this article is available as a PDF (321.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Archer G. L., Niemeyer D. M., Thanassi J. A., Pucci M. J. Dissemination among staphylococci of DNA sequences associated with methicillin resistance. Antimicrob Agents Chemother. 1994 Mar;38(3):447–454. doi: 10.1128/aac.38.3.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bugg T. D., Walsh C. T. Intracellular steps of bacterial cell wall peptidoglycan biosynthesis: enzymology, antibiotics, and antibiotic resistance. Nat Prod Rep. 1992 Jun;9(3):199–215. doi: 10.1039/np9920900199. [DOI] [PubMed] [Google Scholar]
- Choi S. Y., Esaki N., Yoshimura T., Soda K. Overproduction of glutamate racemase of Pediococcus pentosaceus in Escherichia coli clone cells and its purification. Protein Expr Purif. 1991 Feb;2(1):90–93. doi: 10.1016/1046-5928(91)90016-c. [DOI] [PubMed] [Google Scholar]
- Choi S. Y., Esaki N., Yoshimura T., Soda K. Reaction mechanism of glutamate racemase, a pyridoxal phosphate-independent amino acid racemase. J Biochem. 1992 Jul;112(1):139–142. doi: 10.1093/oxfordjournals.jbchem.a123853. [DOI] [PubMed] [Google Scholar]
- Doublet P., van Heijenoort J., Bohin J. P., Mengin-Lecreulx D. The murI gene of Escherichia coli is an essential gene that encodes a glutamate racemase activity. J Bacteriol. 1993 May;175(10):2970–2979. doi: 10.1128/jb.175.10.2970-2979.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doublet P., van Heijenoort J., Mengin-Lecreulx D. Identification of the Escherichia coli murI gene, which is required for the biosynthesis of D-glutamic acid, a specific component of bacterial peptidoglycan. J Bacteriol. 1992 Sep;174(18):5772–5779. doi: 10.1128/jb.174.18.5772-5779.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doublet P., van Heijenoort J., Mengin-Lecreulx D. The glutamate racemase activity from Escherichia coli is regulated by peptidoglycan precursor UDP-N-acetylmuramoyl-L-alanine. Biochemistry. 1994 May 3;33(17):5285–5290. doi: 10.1021/bi00183a035. [DOI] [PubMed] [Google Scholar]
- Dougherty T. J., Thanassi J. A., Pucci M. J. The Escherichia coli mutant requiring D-glutamic acid is the result of mutations in two distinct genetic loci. J Bacteriol. 1993 Jan;175(1):111–116. doi: 10.1128/jb.175.1.111-116.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gallo K. A., Knowles J. R. Purification, cloning, and cofactor independence of glutamate racemase from Lactobacillus. Biochemistry. 1993 Apr 20;32(15):3981–3990. doi: 10.1021/bi00066a019. [DOI] [PubMed] [Google Scholar]
- Gallo K. A., Tanner M. E., Knowles J. R. Mechanism of the reaction catalyzed by glutamate racemase. Biochemistry. 1993 Apr 20;32(15):3991–3997. doi: 10.1021/bi00066a020. [DOI] [PubMed] [Google Scholar]
- Hoffmann B., Messer W., Schwarz U. Regulation of polar cap formation in the life cycle of Escherichia coli. J Supramol Struct. 1972;1(1):29–37. doi: 10.1002/jss.400010105. [DOI] [PubMed] [Google Scholar]
- KURAMITSU H. K., SNOKE J. E. The biosynthesis of D-amino acids in Bacillus licheniformis. Biochim Biophys Acta. 1962 Jul 30;62:114–121. doi: 10.1016/0006-3002(62)90496-1. [DOI] [PubMed] [Google Scholar]
- Lugtenberg E. J., Wijsman H. J., van Zaane D. Properties of a D-glutamic acid-requiring mutant of Escherichia coli. J Bacteriol. 1973 May;114(2):499–506. doi: 10.1128/jb.114.2.499-506.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pucci M. J., Novotny J., Discotto L. F., Dougherty T. J. The Escherichia coli Dga (MurI) protein shares biological activity and structural domains with the Pediococcus pentosaceus glutamate racemase. J Bacteriol. 1994 Jan;176(2):528–530. doi: 10.1128/jb.176.2.528-530.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schleifer K. H., Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev. 1972 Dec;36(4):407–477. doi: 10.1128/br.36.4.407-477.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- THORNE C. B., GOMEZ C. G., HOUSEWRIGHT R. D. Transamination of D-amino acids by Bacillus subtilis. J Bacteriol. 1955 Mar;69(3):357–362. doi: 10.1128/jb.69.3.357-362.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- THORNE C. B., MOLNAR D. M. D-Amino acid transamination in bacillus anthracis. J Bacteriol. 1955 Oct;70(4):420–426. doi: 10.1128/jb.70.4.420-426.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanizawa K., Asano S., Masu Y., Kuramitsu S., Kagamiyama H., Tanaka H., Soda K. The primary structure of thermostable D-amino acid aminotransferase from a thermophilic Bacillus species and its correlation with L-amino acid aminotransferases. J Biol Chem. 1989 Feb 15;264(5):2450–2454. [PubMed] [Google Scholar]
- Tanner M. E., Gallo K. A., Knowles J. R. Isotope effects and the identification of catalytic residues in the reaction catalyzed by glutamate racemase. Biochemistry. 1993 Apr 20;32(15):3998–4006. doi: 10.1021/bi00066a021. [DOI] [PubMed] [Google Scholar]
- Wang R. F., Kushner S. R. Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli. Gene. 1991 Apr;100:195–199. [PubMed] [Google Scholar]
- Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
- Yoshimura T., Ashiuchi M., Esaki N., Kobatake C., Choi S. Y., Soda K. Expression of glr (murI, dga) gene encoding glutamate racemase in Escherichia coli. J Biol Chem. 1993 Nov 15;268(32):24242–24246. [PubMed] [Google Scholar]