Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Jan;177(2):378–384. doi: 10.1128/jb.177.2.378-384.1995

Purification and characterization of a mesohalic catalase from the halophilic bacterium Halobacterium halobium.

N J Brown-Peterson 1, M L Salin 1
PMCID: PMC176601  PMID: 7814327

Abstract

When subjected to the stress of growth in a relatively low-salt environment (1.25 M NaCl), the halophilic bacterium Halobacterium halobium induces a catalase. The protein has been purified to electrophoretic homogeneity and has an M(r) of 240,000 and a subunit size of approximately 62,000. The enzyme is active over a broad pH range of 6.5 to 10.0, with a peak in activity at pH 7.0. It has an isoelectric point of 4.0. This catalse, which is not readily reduced by dithionite, shows a Soret peak at 406 nm. Cyanide and azide inhibit the enzyme at micromolar concentrations, whereas maleimide is without effect. The addition of 20 mM 3-amino-1,2,4-triazole results in a 33% inhibition in enzymatic activity. The tetrameric protein binds NADP in a 1:1 ratio but does not peroxidize NADPH, NADH, or ascorbate. Although the enzymatic activity is maximal when assayed in a 50 mM potassium phosphate buffer with no NaCl, prolonged incubation in a buffer lacking NaCl results in inactive enzyme. Moreover, purification must be performed in the presence of 2 M NaCl. Equally as effective in retaining enzymatic function are NaCl, LiCl, KCl, CsCl, and NH4Cl, whereas divalent salts such as MgCl2 and CaCl2 result in the immediate loss of activity. The catalase is stained by pararosaniline, which is indicative of a glycosidic linkage. The Km for H2O2 is 60 mM, with inhibition observed at concentrations in excess of 90 mM. Thus, the mesohalic catalase purified from H. halobium seems to be similar to other catalases, except for the salt requirements, but differs markedly from the constitutive halobacterial hydroperoxidase.

Full Text

The Full Text of this article is available as a PDF (237.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BEERS R. F., Jr, SIZER I. W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952 Mar;195(1):133–140. [PubMed] [Google Scholar]
  2. Begonia G. B., Salin M. L. Elevation of superoxide dismutase in Halobacterium halobium by heat shock. J Bacteriol. 1991 Sep;173(17):5582–5584. doi: 10.1128/jb.173.17.5582-5584.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brill A. S., Williams R. J. The absorption spectra, magnetic moments and the binding of iron in some haemoproteins. Biochem J. 1961 Feb;78(2):246–253. doi: 10.1042/bj0780246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown-Peterson N. J., Salin M. L. Purification of a catalase-peroxidase from Halobacterium halobium: characterization of some unique properties of the halophilic enzyme. J Bacteriol. 1993 Jul;175(13):4197–4202. doi: 10.1128/jb.175.13.4197-4202.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Claiborne A., Fridovich I. Purification of the o-dianisidine peroxidase from Escherichia coli B. Physicochemical characterization and analysis of its dual catalatic and peroxidatic activities. J Biol Chem. 1979 May 25;254(10):4245–4252. [PubMed] [Google Scholar]
  6. Clare D. A., Duong M. N., Darr D., Archibald F., Fridovich I. Effects of molecular oxygen on detection of superoxide radical with nitroblue tetrazolium and on activity stains for catalase. Anal Biochem. 1984 Aug 1;140(2):532–537. doi: 10.1016/0003-2697(84)90204-5. [DOI] [PubMed] [Google Scholar]
  7. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  8. Deisseroth A., Dounce A. L. Catalase: Physical and chemical properties, mechanism of catalysis, and physiological role. Physiol Rev. 1970 Jul;50(3):319–375. doi: 10.1152/physrev.1970.50.3.319. [DOI] [PubMed] [Google Scholar]
  9. Demple B. Regulation of bacterial oxidative stress genes. Annu Rev Genet. 1991;25:315–337. doi: 10.1146/annurev.ge.25.120191.001531. [DOI] [PubMed] [Google Scholar]
  10. Fridovich I. Biological effects of the superoxide radical. Arch Biochem Biophys. 1986 May 15;247(1):1–11. doi: 10.1016/0003-9861(86)90526-6. [DOI] [PubMed] [Google Scholar]
  11. Fukumori Y., Fujiwara T., Okada-Takahashi Y., Mukohata Y., Yamanaka T. Purification and properties of a peroxidase from Halobacterium halobium L-33. J Biochem. 1985 Oct;98(4):1055–1061. doi: 10.1093/oxfordjournals.jbchem.a135352. [DOI] [PubMed] [Google Scholar]
  12. Goldberg I., Hochman A. Purification and characterization of a novel type of catalase from the bacterium Klebsiella pneumoniae. Biochim Biophys Acta. 1989 May 31;991(2):330–336. doi: 10.1016/0304-4165(89)90124-4. [DOI] [PubMed] [Google Scholar]
  13. Hartmann R., Sickinger H. D., Oesterhelt D. Quantitative aspects of energy conversion in halobacteria. FEBS Lett. 1977 Oct 1;82(1):1–6. doi: 10.1016/0014-5793(77)80873-9. [DOI] [PubMed] [Google Scholar]
  14. Hochman A., Figueredo A., Wall J. D. Physiological functions of hydroperoxidases in Rhodobacter capsulatus. J Bacteriol. 1992 May;174(10):3386–3391. doi: 10.1128/jb.174.10.3386-3391.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hochman A., Goldberg I. Purification and characterization of a catalase-peroxidase and a typical catalase from the bacterium Klebsiella pneumoniae. Biochim Biophys Acta. 1991 Apr 29;1077(3):299–307. doi: 10.1016/0167-4838(91)90544-a. [DOI] [PubMed] [Google Scholar]
  16. Hochman A., Shemesh A. Purification and characterization of a catalase-peroxidase from the photosynthetic bacterium Rhodopseudomonas capsulata. J Biol Chem. 1987 May 15;262(14):6871–6876. [PubMed] [Google Scholar]
  17. Jacob G. S., Orme-Johnson W. H. Catalase of Neurospora crassa. 1. Induction, purification, and physical properties. Biochemistry. 1979 Jul 10;18(14):2967–2975. doi: 10.1021/bi00581a009. [DOI] [PubMed] [Google Scholar]
  18. Kato T., Berger S. J., Carter J. A., Lowry O. H. An enzymatic cycling method for nicotinamide-adenine dinucleotide with malic and alcohol dehydrogenases. Anal Biochem. 1973 May;53(1):86–97. doi: 10.1016/0003-2697(73)90409-0. [DOI] [PubMed] [Google Scholar]
  19. Kirkman H. N., Gaetani G. F. Catalase: a tetrameric enzyme with four tightly bound molecules of NADPH. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4343–4347. doi: 10.1073/pnas.81.14.4343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kono Y., Fridovich I. Superoxide radical inhibits catalase. J Biol Chem. 1982 May 25;257(10):5751–5754. [PubMed] [Google Scholar]
  21. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  22. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  23. Lanyi J. K. Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev. 1974 Sep;38(3):272–290. doi: 10.1128/br.38.3.272-290.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lanyi J. K., Stevenson J. Effect of salts and organic solvents on the activity of Halobacterium cutirubrum catalase. J Bacteriol. 1969 May;98(2):611–616. doi: 10.1128/jb.98.2.611-616.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Loewen P. C., Stauffer G. V. Nucleotide sequence of katG of Salmonella typhimurium LT2 and characterization of its product, hydroperoxidase I. Mol Gen Genet. 1990 Oct;224(1):147–151. doi: 10.1007/BF00259461. [DOI] [PubMed] [Google Scholar]
  26. Loewen P. C., Switala J. Purification and characterization of catalase HPII from Escherichia coli K12. Biochem Cell Biol. 1986 Jul;64(7):638–646. doi: 10.1139/o86-088. [DOI] [PubMed] [Google Scholar]
  27. Loewen P. C., Switala J., von Ossowski I., Hillar A., Christie A., Tattrie B., Nicholls P. Catalase HPII of Escherichia coli catalyzes the conversion of protoheme to cis-heme d. Biochemistry. 1993 Sep 28;32(38):10159–10164. doi: 10.1021/bi00089a035. [DOI] [PubMed] [Google Scholar]
  28. May B. P., Dennis P. P. Superoxide dismutase from the extremely halophilic archaebacterium Halobacterium cutirubrum. J Bacteriol. 1987 Apr;169(4):1417–1422. doi: 10.1128/jb.169.4.1417-1422.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Salin M. L. Chloroplast and mitochondrial mechanisms for protection against oxygen toxicity. Free Radic Res Commun. 1991;12-13 Pt 2:851–858. doi: 10.3109/10715769109145867. [DOI] [PubMed] [Google Scholar]
  30. Salin M. L., Oesterhelt D. Purification of a manganese-containing superoxide dismutase from Halobacterium halobium. Arch Biochem Biophys. 1988 Feb 1;260(2):806–810. doi: 10.1016/0003-9861(88)90511-5. [DOI] [PubMed] [Google Scholar]
  31. Schellhorn H. E., Stones V. L. Regulation of katF and katE in Escherichia coli K-12 by weak acids. J Bacteriol. 1992 Jul;174(14):4769–4776. doi: 10.1128/jb.174.14.4769-4776.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yumoto I., Fukumori Y., Yamanaka T. Purification and characterization of catalase from a facultative alkalophilic Bacillus. J Biochem. 1990 Oct;108(4):583–587. doi: 10.1093/oxfordjournals.jbchem.a123246. [DOI] [PubMed] [Google Scholar]
  33. Zacharius R. M., Zell T. E., Morrison J. H., Woodlock J. J. Glycoprotein staining following electrophoresis on acrylamide gels. Anal Biochem. 1969 Jul;30(1):148–152. doi: 10.1016/0003-2697(69)90383-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES