Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Jan;177(2):390–400. doi: 10.1128/jb.177.2.390-400.1995

Isolation and characterization of adenylate kinase (adk) mutations in Salmonella typhimurium which block the ability of glycine betaine to function as an osmoprotectant.

J A Gutierrez 1, L N Csonka 1
PMCID: PMC176603  PMID: 7814329

Abstract

Mutants of Salmonella typhimurium that were not protected by glycine betaine (GB) but could still use proline as an osmoprotectant in media of high osmolality were isolated. The mutations responsible for this phenotype proved to be alleles of the adenylate kinase (adk) gene, as shown by genetic mapping, sequencing of the cloned mutant alleles, complementation with the Escherichia coli adk gene, and assay of Adk enzyme activity in crude extracts. One of the mutations was in the untranslated leader of the adk mRNA, a second was in the putative Shine-Dalgarno sequence, and a third was in the coding region of the gene. The loss of osmoprotection by GB was shown to be due to the fact that the accumulation of this solute actually resulted in a severe inhibition of growth in the adk mutants. The addition of GB in the presence of 0.5 M NaCl resulted in a rapid decline in the ATP pool and a dramatic increase in the AMP pool in the mutants. Proline, which is not toxic to the adk mutants, did not have any significant effects on the cellular levels of ATP and AMP. The mutants exhibited two different phenotypes with respect to the utilization of other osmoprotectants: they were also inhibited by propiothiobetaine, L-carnitine, and gamma-butyrobetaine, but they were stimulated normally in media of high osmolality by proline, choline-O-sulfate, and stachydrine.

Full Text

The Full Text of this article is available as a PDF (376.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barron A., Jung J. U., Villarejo M. Purification and characterization of a glycine betaine binding protein from Escherichia coli. J Biol Chem. 1987 Aug 25;262(24):11841–11846. [PubMed] [Google Scholar]
  2. Brune M., Schumann R., Wittinghofer F. Cloning and sequencing of the adenylate kinase gene (adk) of Escherichia coli. Nucleic Acids Res. 1985 Oct 11;13(19):7139–7151. doi: 10.1093/nar/13.19.7139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. COHEN G. N., RICKENBERG H. V. Concentration spécifique réversible des amino acides chez Escherichia coli. Ann Inst Pasteur (Paris) 1956 Nov;91(5):693–720. [PubMed] [Google Scholar]
  4. Cairney J., Booth I. R., Higgins C. F. Osmoregulation of gene expression in Salmonella typhimurium: proU encodes an osmotically induced betaine transport system. J Bacteriol. 1985 Dec;164(3):1224–1232. doi: 10.1128/jb.164.3.1224-1232.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cairney J., Booth I. R., Higgins C. F. Salmonella typhimurium proP gene encodes a transport system for the osmoprotectant betaine. J Bacteriol. 1985 Dec;164(3):1218–1223. doi: 10.1128/jb.164.3.1218-1223.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cayley S., Lewis B. A., Record M. T., Jr Origins of the osmoprotective properties of betaine and proline in Escherichia coli K-12. J Bacteriol. 1992 Mar;174(5):1586–1595. doi: 10.1128/jb.174.5.1586-1595.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chapman A. G., Fall L., Atkinson D. E. Adenylate energy charge in Escherichia coli during growth and starvation. J Bacteriol. 1971 Dec;108(3):1072–1086. doi: 10.1128/jb.108.3.1072-1086.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cousin D., Buttin G. Mutants thermosensibles d'Escherichia coli K12. 3. Une mutation létale d'E. coli affectant l'activité de l'adénylate-kinase. Ann Inst Pasteur (Paris) 1969 Nov;117(5):612–630. [PubMed] [Google Scholar]
  9. Csonka L. N. A third L-proline permease in Salmonella typhimurium which functions in media of elevated osmotic strength. J Bacteriol. 1982 Sep;151(3):1433–1443. doi: 10.1128/jb.151.3.1433-1443.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Csonka L. N., Hanson A. D. Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol. 1991;45:569–606. doi: 10.1146/annurev.mi.45.100191.003033. [DOI] [PubMed] [Google Scholar]
  11. Csonka L. N., Howe M. M., Ingraham J. L., Pierson L. S., 3rd, Turnbough C. L., Jr Infection of Salmonella typhimurium with coliphage Mu d1 (Apr lac): construction of pyr::lac gene fusions. J Bacteriol. 1981 Jan;145(1):299–305. doi: 10.1128/jb.145.1.299-305.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Doige C. A., Ames G. F. ATP-dependent transport systems in bacteria and humans: relevance to cystic fibrosis and multidrug resistance. Annu Rev Microbiol. 1993;47:291–319. doi: 10.1146/annurev.mi.47.100193.001451. [DOI] [PubMed] [Google Scholar]
  13. EGGLESTON L. V., HEMS R. Separation of adenosine phosphates by paper chromotography and the equilibrium constant of the myokinase system. Biochem J. 1952 Sep;52(1):156–160. doi: 10.1042/bj0520156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Freier S. M., Kierzek R., Jaeger J. A., Sugimoto N., Caruthers M. H., Neilson T., Turner D. H. Improved free-energy parameters for predictions of RNA duplex stability. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9373–9377. doi: 10.1073/pnas.83.24.9373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Frustaci J. M., O'Brian M. R. The Escherichia coli visA gene encodes ferrochelatase, the final enzyme of the heme biosynthetic pathway. J Bacteriol. 1993 Apr;175(7):2154–2156. doi: 10.1128/jb.175.7.2154-2156.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gerstein M., Schulz G., Chothia C. Domain closure in adenylate kinase. Joints on either side of two helices close like neighboring fingers. J Mol Biol. 1993 Jan 20;229(2):494–501. doi: 10.1006/jmbi.1993.1048. [DOI] [PubMed] [Google Scholar]
  17. Glaser M., Nulty W., Vagelos P. R. Role of adenylate kinase in the regulation of macromolecular biosynthesis in a putative mutant of Escherichia coli defective in membrane phospholipid biosynthesis. J Bacteriol. 1975 Jul;123(1):128–136. doi: 10.1128/jb.123.1.128-136.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Glembotski C. C., Chapman A. G., Atkinson D. E. Adenylate energy charge in Escherichia coli CR341T28 and properties of heat-sensitive adenylate kinase. J Bacteriol. 1981 Mar;145(3):1374–1385. doi: 10.1128/jb.145.3.1374-1385.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gold L., Pribnow D., Schneider T., Shinedling S., Singer B. S., Stormo G. Translational initiation in prokaryotes. Annu Rev Microbiol. 1981;35:365–403. doi: 10.1146/annurev.mi.35.100181.002053. [DOI] [PubMed] [Google Scholar]
  20. Groisman E. A., Casadaban M. J. Mini-mu bacteriophage with plasmid replicons for in vivo cloning and lac gene fusing. J Bacteriol. 1986 Oct;168(1):357–364. doi: 10.1128/jb.168.1.357-364.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Heiman C., Miller C. G. Acylaminoacid esterase mutants of Salmonella typhimurium. Mol Gen Genet. 1978 Aug 4;164(1):57–62. doi: 10.1007/BF00267599. [DOI] [PubMed] [Google Scholar]
  22. Henson J. M., Blinkowa A., Walker J. R. The Escherichia coli dnaW mutation is an allele of the adk gene. Mol Gen Genet. 1982;186(4):488–492. doi: 10.1007/BF00337953. [DOI] [PubMed] [Google Scholar]
  23. Higgins C. F. ABC transporters: from microorganisms to man. Annu Rev Cell Biol. 1992;8:67–113. doi: 10.1146/annurev.cb.08.110192.000435. [DOI] [PubMed] [Google Scholar]
  24. Huss R. J., Glaser M. Identification and purification of an adenylate kinase-associated protein that influences the thermolability of adenylate kinase from a temperature-sensitive adk mutant of Escherichia coli. J Biol Chem. 1983 Nov 10;258(21):13370–13376. [PubMed] [Google Scholar]
  25. Jebbar M., Talibart R., Gloux K., Bernard T., Blanco C. Osmoprotection of Escherichia coli by ectoine: uptake and accumulation characteristics. J Bacteriol. 1992 Aug;174(15):5027–5035. doi: 10.1128/jb.174.15.5027-5035.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kennedy E. P. Osmotic regulation and the biosynthesis of membrane-derived oligosaccharides in Escherichia coli. Proc Natl Acad Sci U S A. 1982 Feb;79(4):1092–1095. doi: 10.1073/pnas.79.4.1092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kilbane J. J., 2nd, Bielaga B. A. Instantaneous gene transfer from donor to recipient microorganisms via electroporation. Biotechniques. 1991 Mar;10(3):354–365. [PubMed] [Google Scholar]
  28. Konrad M. Analysis and in vivo disruption of the gene coding for adenylate kinase (ADK1) in the yeast Saccharomyces cerevisiae. J Biol Chem. 1988 Dec 25;263(36):19468–19474. [PubMed] [Google Scholar]
  29. Konrad M. Molecular analysis of the essential gene for adenylate kinase from the fission yeast Schizosaccharomyces pombe. J Biol Chem. 1993 May 25;268(15):11326–11334. [PubMed] [Google Scholar]
  30. Koo S. P., Higgins C. F., Booth I. R. Regulation of compatible solute accumulation in Salmonella typhimurium: evidence for a glycine betaine efflux system. J Gen Microbiol. 1991 Nov;137(11):2617–2625. doi: 10.1099/00221287-137-11-2617. [DOI] [PubMed] [Google Scholar]
  31. Lamark T., Styrvold O. B., Strøm A. R. Efflux of choline and glycine betaine from osmoregulating cells of Escherichia coli. FEMS Microbiol Lett. 1992 Sep 15;75(2-3):149–154. doi: 10.1016/0378-1097(92)90395-5. [DOI] [PubMed] [Google Scholar]
  32. Manoil C., Beckwith J. TnphoA: a transposon probe for protein export signals. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8129–8133. doi: 10.1073/pnas.82.23.8129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Matsuura S., Igarashi M., Tanizawa Y., Yamada M., Kishi F., Kajii T., Fujii H., Miwa S., Sakurai M., Nakazawa A. Human adenylate kinase deficiency associated with hemolytic anemia. A single base substitution affecting solubility and catalytic activity of the cytosolic adenylate kinase. J Biol Chem. 1989 Jun 15;264(17):10148–10155. [PubMed] [Google Scholar]
  34. Milner J. L., Grothe S., Wood J. M. Proline porter II is activated by a hyperosmotic shift in both whole cells and membrane vesicles of Escherichia coli K12. J Biol Chem. 1988 Oct 15;263(29):14900–14905. [PubMed] [Google Scholar]
  35. Mimmack M. L., Gallagher M. P., Pearce S. R., Hyde S. C., Booth I. R., Higgins C. F. Energy coupling to periplasmic binding protein-dependent transport systems: stoichiometry of ATP hydrolysis during transport in vivo. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8257–8261. doi: 10.1073/pnas.86.21.8257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Overdier D. G., Csonka L. N. A transcriptional silencer downstream of the promoter in the osmotically controlled proU operon of Salmonella typhimurium. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):3140–3144. doi: 10.1073/pnas.89.7.3140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Perroud B., Le Rudulier D. Glycine betaine transport in Escherichia coli: osmotic modulation. J Bacteriol. 1985 Jan;161(1):393–401. doi: 10.1128/jb.161.1.393-401.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Purich D. L., Fromm H. J. Additional factors influencing enzyme responses to the adenylate energy charge. J Biol Chem. 1973 Jan 25;248(2):461–466. [PubMed] [Google Scholar]
  39. Saier M. H., Jr, Feucht B. U. Regulation of carbohydrate transport activities in Salmonella typhimurium: use of the phosphoglycerate transport system to energize solute uptake. J Bacteriol. 1980 Feb;141(2):611–617. doi: 10.1128/jb.141.2.611-617.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sakai Y., Rogi T., Yonehara T., Kato N., Tani Y. High-level ATP production by a genetically-engineered Candida yeast. Biotechnology (N Y) 1994 Mar;12(3):291–293. doi: 10.1038/nbt0394-291. [DOI] [PubMed] [Google Scholar]
  41. Sanderson K. E., Roth J. R. Linkage map of Salmonella typhimurium, edition VII. Microbiol Rev. 1988 Dec;52(4):485–532. doi: 10.1128/mr.52.4.485-532.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Watanabe K., Fukumoto H., Isoi K. Intracellular localization of ATP:AMP phosphotransferase in Escherichia coli. Biochem Biophys Res Commun. 1986 Jan 29;134(2):527–531. doi: 10.1016/s0006-291x(86)80452-1. [DOI] [PubMed] [Google Scholar]
  44. Wilmes-Riesenberg M. R., Wanner B. L. TnphoA and TnphoA' elements for making and switching fusions for study of transcription, translation, and cell surface localization. J Bacteriol. 1992 Jul;174(14):4558–4575. doi: 10.1128/jb.174.14.4558-4575.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Youderian P., Sugiono P., Brewer K. L., Higgins N. P., Elliott T. Packaging specific segments of the Salmonella chromosome with locked-in Mud-P22 prophages. Genetics. 1988 Apr;118(4):581–592. doi: 10.1093/genetics/118.4.581. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES