Abstract
The branched respiratory chain of Pseudomonas aeruginosa contains at least two terminal oxidases which are active under normal physiological conditions. One of these, cytochrome co, is a cytochrome c oxidase which is completely inhibited by concentrations of the respiratory inhibitor potassium cyanide as low as 100 microM. The second oxidase, the cyanide-insensitive oxidase, is resistant to cyanide concentrations in excess of 1 mM as well as to sodium azide. In this work, we describe the isolation and characterization of a mutant of P. aeruginosa defective in cyanide-insensitive respiration. This insertion mutant was isolated with mini-D171 (a replication-defective derivative of the P. aeruginosa phage D3112) as a mutagen and by screening the resulting tetracycline-resistant transductants for the loss of ability to grow in the presence of 1 mM sodium azide. Polarographic studies on the NADH-mediated respiration rate of the mutant indicated an approximate 50% loss of activity, and titration of this activity against increasing cyanide concentrations gave a monophasic curve clearly showing the complete loss of cyanide-insensitive respiration. The mutated gene for a mutant affected in the cyanide-insensitive, oxidase-terminated respiratory pathway has been designated cio. We have complemented the azide-sensitive phenotype of this mutant with a wild-type copy of the gene by in vivo cloning with another mini-D element, mini-D386, carried on plasmid pADD386. The complemented cio mutant regained the ability to grow on medium containing 1 mM azide, titration of its NADH oxidase activity with cyanide gave a biphasic curve similar to that of the wild-type organism, and the respiration rate returned to normal levels. Spectral analysis of the cytochrome contents of the membranes of the wild type, the cio mutant, and the complemented mutant suggests that the cio mutant is not defective in any membrane-bound cytochromes and that the complementing gene does not encode a heme protein.
Full Text
The Full Text of this article is available as a PDF (244.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akimenko V. K., Trutko S. M. On the absence of correlation between cyanide-resistant respiration and cytochrome d content in bacteria. Arch Microbiol. 1984 May;138(1):58–63. doi: 10.1007/BF00425408. [DOI] [PubMed] [Google Scholar]
- Bachmann B. J. Linkage map of Escherichia coli K-12, edition 8. Microbiol Rev. 1990 Jun;54(2):130–197. doi: 10.1128/mr.54.2.130-197.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bonner W. D., Clarke S. D., Rich P. R. Partial Purification and Characterization of the Quinol Oxidase Activity of Arum maculatum Mitochondria. Plant Physiol. 1986 Apr;80(4):838–842. doi: 10.1104/pp.80.4.838. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Calhoun M. W., Thomas J. W., Gennis R. B. The cytochrome oxidase superfamily of redox-driven proton pumps. Trends Biochem Sci. 1994 Aug;19(8):325–330. doi: 10.1016/0968-0004(94)90071-x. [DOI] [PubMed] [Google Scholar]
- Castric P. A. Hydrogen cyanide production by Pseudomonas aeruginosa at reduced oxygen levels. Can J Microbiol. 1983 Oct;29(10):1344–1349. doi: 10.1139/m83-209. [DOI] [PubMed] [Google Scholar]
- Chepuri V., Lemieux L., Au D. C., Gennis R. B. The sequence of the cyo operon indicates substantial structural similarities between the cytochrome o ubiquinol oxidase of Escherichia coli and the aa3-type family of cytochrome c oxidases. J Biol Chem. 1990 Jul 5;265(19):11185–11192. [PubMed] [Google Scholar]
- Darzins A., Casadaban M. J. In vivo cloning of Pseudomonas aeruginosa genes with mini-D3112 transposable bacteriophage. J Bacteriol. 1989 Jul;171(7):3917–3925. doi: 10.1128/jb.171.7.3917-3925.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davies K. J., Lloyd D., Boddy L. The effect of oxygen on denitrification in Paracoccus denitrificans and Pseudomonas aeruginosa. J Gen Microbiol. 1989 Sep;135(9):2445–2451. doi: 10.1099/00221287-135-9-2445. [DOI] [PubMed] [Google Scholar]
- Fujiwara T., Fukumori Y., Yamanaka T. A novel terminal oxidase, cytochrome baa3 purified from aerobically grown Pseudomonas aeruginosa: it shows a clear difference between resting state and pulsed state. J Biochem. 1992 Aug;112(2):290–298. doi: 10.1093/oxfordjournals.jbchem.a123893. [DOI] [PubMed] [Google Scholar]
- Gabel C., Maier R. J. Nucleotide sequence of the coxA gene encoding subunit I of cytochrome aa3 of Bradyrhizobium japonicum. Nucleic Acids Res. 1990 Oct 25;18(20):6143–6143. doi: 10.1093/nar/18.20.6143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- García-Horsman J. A., Barquera B., Rumbley J., Ma J., Gennis R. B. The superfamily of heme-copper respiratory oxidases. J Bacteriol. 1994 Sep;176(18):5587–5600. doi: 10.1128/jb.176.18.5587-5600.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gennis R. B. Some recent advances relating to prokaryotic cytochrome c reductases and cytochrome c oxidases. Biochim Biophys Acta. 1991 May 23;1058(1):21–24. doi: 10.1016/s0005-2728(05)80260-9. [DOI] [PubMed] [Google Scholar]
- Goldfarb W. B., Margraf H. Cyanide production by pseudomonas aeruginosa. Ann Surg. 1967 Jan;165(1):104–110. doi: 10.1097/00000658-196701000-00014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green G. N., Fang H., Lin R. J., Newton G., Mather M., Georgiou C. D., Gennis R. B. The nucleotide sequence of the cyd locus encoding the two subunits of the cytochrome d terminal oxidase complex of Escherichia coli. J Biol Chem. 1988 Sep 15;263(26):13138–13143. [PubMed] [Google Scholar]
- Green G. N., Kranz R. G., Lorence R. M., Gennis R. B. Identification of subunit I as the cytochrome b558 component of the cytochrome d terminal oxidase complex of Escherichia coli. J Biol Chem. 1984 Jun 25;259(12):7994–7997. [PubMed] [Google Scholar]
- Huq S., Palmer J. M. Isolation of a cyanide-resistant duroquinol oxidase from Arum maculatum mitochondria. FEBS Lett. 1978 Nov 15;95(2):217–220. doi: 10.1016/0014-5793(78)80997-1. [DOI] [PubMed] [Google Scholar]
- Kay C. J., Palmer J. M. Solubilization of the alternative oxidase of cuckoo-pint (Arum maculatum) mitochondria. Stimulation by high concentrations of ions and effects of specific inhibitors. Biochem J. 1985 Jun 1;228(2):309–318. doi: 10.1042/bj2280309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kita K., Konishi K., Anraku Y. Terminal oxidases of Escherichia coli aerobic respiratory chain. I. Purification and properties of cytochrome b562-o complex from cells in the early exponential phase of aerobic growth. J Biol Chem. 1984 Mar 10;259(5):3368–3374. [PubMed] [Google Scholar]
- Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
- Matsushita K., Shinagawa E., Adachi O., Ameyama M. Membrane-bound D-gluconate dehydrogenase from Pseudomonas aeruginosa. Purification and structure of cytochrome-binding form. J Biochem. 1979 May;85(5):1173–1181. [PubMed] [Google Scholar]
- Matsushita K., Yamada M., Shinagawa E., Adachi O., Ameyama M. Function of ubiquinone in the electron transport system of Pseudomonas aeruginosa grown aerobically. J Biochem. 1980 Sep;88(3):757–764. doi: 10.1093/oxfordjournals.jbchem.a133028. [DOI] [PubMed] [Google Scholar]
- Matsushita K., Yamada M., Shinagawa E., Adachi O., Ameyama M. Membrane-bound respiratory chain of Pseudomonas aeruginosa grown aerobically. A KCN-insensitive alternate oxidase chain and its energetics. J Biochem. 1983 Apr;93(4):1137–1144. doi: 10.1093/oxfordjournals.jbchem.a134239. [DOI] [PubMed] [Google Scholar]
- Matsushita K., Yamada M., Shinagawa E., Adachi O., Ameyama M. Membrane-bound respiratory chain of Pseudomonas aeruginosa grown aerobically. J Bacteriol. 1980 Jan;141(1):389–392. doi: 10.1128/jb.141.1.389-392.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moshiri F., Chawla A., Maier R. J. Cloning, characterization, and expression in Escherichia coli of the genes encoding the cytochrome d oxidase complex from Azotobacter vinelandii. J Bacteriol. 1991 Oct;173(19):6230–6241. doi: 10.1128/jb.173.19.6230-6241.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Brian M. R., Kirshbom P. M., Maier R. J. Tn5-induced cytochrome mutants of Bradyrhizobium japonicum: effects of the mutations on cells grown symbiotically and in culture. J Bacteriol. 1987 Mar;169(3):1089–1094. doi: 10.1128/jb.169.3.1089-1094.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poole R. K. Bacterial cytochrome oxidases. A structurally and functionally diverse group of electron-transfer proteins. Biochim Biophys Acta. 1983 Sep 15;726(3):205–243. doi: 10.1016/0304-4173(83)90006-x. [DOI] [PubMed] [Google Scholar]
- Poole R. K., Williams H. D., Downie J. A., Gibson F. Mutations affecting the cytochrome d-containing oxidase complex of Escherichia coli K12: identification and mapping of a fourth locus, cydD. J Gen Microbiol. 1989 Jul;135(7):1865–1874. doi: 10.1099/00221287-135-7-1865. [DOI] [PubMed] [Google Scholar]
- Ramos F., Stalon V., Piérard A., Wiame J. M. The specialization of the two ornithine carbamoyltransferases of Pseudomonas. Biochim Biophys Acta. 1967 May 16;139(1):98–106. doi: 10.1016/0005-2744(67)90116-7. [DOI] [PubMed] [Google Scholar]
- Rothmel R. K., Chakrabarty A. M., Berry A., Darzins A. Genetic systems in Pseudomonas. Methods Enzymol. 1991;204:485–514. doi: 10.1016/0076-6879(91)04025-j. [DOI] [PubMed] [Google Scholar]
- Saraste M., Metso T., Nakari T., Jalli T., Lauraeus M., Van der Oost J. The Bacillus subtilis cytochrome-c oxidase. Variations on a conserved protein theme. Eur J Biochem. 1991 Jan 30;195(2):517–525. doi: 10.1111/j.1432-1033.1991.tb15732.x. [DOI] [PubMed] [Google Scholar]
- Saraste M. Structural features of cytochrome oxidase. Q Rev Biophys. 1990 Nov;23(4):331–366. doi: 10.1017/s0033583500005588. [DOI] [PubMed] [Google Scholar]
- Schweizer H. P. Escherichia-Pseudomonas shuttle vectors derived from pUC18/19. Gene. 1991 Jan 2;97(1):109–121. doi: 10.1016/0378-1119(91)90016-5. [DOI] [PubMed] [Google Scholar]
- Shapleigh J. P., Gennis R. B. Cloning, sequencing and deletion from the chromosome of the gene encoding subunit I of the aa3-type cytochrome c oxidase of Rhodobacter sphaeroides. Mol Microbiol. 1992 Mar;6(5):635–642. doi: 10.1111/j.1365-2958.1992.tb01511.x. [DOI] [PubMed] [Google Scholar]
- Trutko S. M., Akimenko V. K. Usloviia poiavleniia tsianidrezistentnogo dykhaniia u Pseudomonas aeruginosa. Mikrobiologiia. 1979 Mar-Apr;48(2):181–186. [PubMed] [Google Scholar]
- Trutko S. M., Golovchenko N. P., Akimenko V. K. Izuchenie tsianidrezistentnogo dykhaniia bakterii Pseudomonas aeruginosa. Biokhimiia. 1979 Apr;44(4):720–728. [PubMed] [Google Scholar]
- Vander Wauven C., Piérard A., Kley-Raymann M., Haas D. Pseudomonas aeruginosa mutants affected in anaerobic growth on arginine: evidence for a four-gene cluster encoding the arginine deiminase pathway. J Bacteriol. 1984 Dec;160(3):928–934. doi: 10.1128/jb.160.3.928-934.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zannoni D. The respiratory chains of pathogenic pseudomonads. Biochim Biophys Acta. 1989 Aug 3;975(3):299–316. doi: 10.1016/s0005-2728(89)80337-8. [DOI] [PubMed] [Google Scholar]
- van Hartingsveldt J., Stouthamer A. H. Mapping and characerization of mutants of Pseudomonas aeruginosa affected in nitrate respiration in aerobic or anaerobic growth. J Gen Microbiol. 1973 Jan;74(1):97–106. doi: 10.1099/00221287-74-1-97. [DOI] [PubMed] [Google Scholar]