Skip to main content
Tobacco Control logoLink to Tobacco Control
. 2004 Mar;13(Suppl 1):i48–i56. doi: 10.1136/tc.2002.002816

Carcinogen derived biomarkers: applications in studies of human exposure to secondhand tobacco smoke

S Hecht
PMCID: PMC1766147  PMID: 14985617

Abstract

Objective: To review the literature on carcinogen derived biomarkers of exposure to secondhand tobacco smoke (SHS). These biomarkers are specifically related to known carcinogens in tobacco smoke and include urinary metabolites, DNA adducts, and blood protein adducts.

Method: Published reviews and the current literature were searched for relevant articles.

Results: The most consistently elevated biomarker in people exposed to SHS was 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and its glucuronides (NNAL-Gluc), urinary metabolites of the tobacco specific lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). The tobacco specificity of this biomarker as well as its clear relation to an established lung carcinogen are particularly appropriate for its application in studies of SHS exposure.

Conclusion: The results of the available carcinogen derived biomarker studies provide biochemical data which support the conclusion, based on epidemiologic investigations, that SHS causes lung cancer in non-smokers.

Full Text

The Full Text of this article is available as a PDF (386.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams J. D., O'Mara-Adams K. J., Hoffmann D. Toxic and carcinogenic agents in undiluted mainstream smoke and sidestream smoke of different types of cigarettes. Carcinogenesis. 1987 May;8(5):729–731. doi: 10.1093/carcin/8.5.729. [DOI] [PubMed] [Google Scholar]
  2. Anderson K. E., Carmella S. G., Ye M., Bliss R. L., Le C., Murphy L., Hecht S. S. Metabolites of a tobacco-specific lung carcinogen in nonsmoking women exposed to environmental tobacco smoke. J Natl Cancer Inst. 2001 Mar 7;93(5):378–381. doi: 10.1093/jnci/93.5.378. [DOI] [PubMed] [Google Scholar]
  3. Autrup H., Vestergaard A. B., Okkels H. Transplacental transfer of environmental genotoxins: polycyclic aromatic hydrocarbon-albumin in non-smoking women, and the effect of maternal GSTM1 genotype. Carcinogenesis. 1995 Jun;16(6):1305–1309. doi: 10.1093/carcin/16.6.1305. [DOI] [PubMed] [Google Scholar]
  4. Bartsch H., Caporaso N., Coda M., Kadlubar F., Malaveille C., Skipper P., Talaska G., Tannenbaum S. R., Vineis P. Carcinogen hemoglobin adducts, urinary mutagenicity, and metabolic phenotype in active and passive cigarette smokers. J Natl Cancer Inst. 1990 Dec 5;82(23):1826–1831. doi: 10.1093/jnci/82.23.1826. [DOI] [PubMed] [Google Scholar]
  5. Bartsch H., Spiegelhalder B. Environmental exposure to N-nitroso compounds (NNOC) and precursors: an overview. Eur J Cancer Prev. 1996 Sep;5 (Suppl 1):11–17. [PubMed] [Google Scholar]
  6. Besaratinia A., Maas L. M., Brouwer E. M. C., Moonen E. J. C., De Kok T. M. C. M., Wesseling G. J., Loft S., Kleinjans J. C. S., Van Schooten F. J. A molecular dosimetry approach to assess human exposure to environmental tobacco smoke in pubs. Carcinogenesis. 2002 Jul;23(7):1171–1176. doi: 10.1093/carcin/23.7.1171. [DOI] [PubMed] [Google Scholar]
  7. Binková B., Lewtas J., Misková I., Lenícek J., Srám R. DNA adducts and personal air monitoring of carcinogenic polycyclic aromatic hydrocarbons in an environmentally exposed population. Carcinogenesis. 1995 May;16(5):1037–1046. doi: 10.1093/carcin/16.5.1037. [DOI] [PubMed] [Google Scholar]
  8. Blot W. J., McLaughlin J. K. Passive smoking and lung cancer risk: what is the story now? J Natl Cancer Inst. 1998 Oct 7;90(19):1416–1417. doi: 10.1093/jnci/90.19.1416. [DOI] [PubMed] [Google Scholar]
  9. Bono R., Vincenti M., Meineri V., Pignata C., Saglia U., Giachino O., Scursatone E. Formation of N-(2-hydroxyethyl)valine due to exposure to ethylene oxide via tobacco smoke: A risk factor for onset of cancer. Environ Res. 1999 Jul;81(1):62–71. doi: 10.1006/enrs.1998.3937. [DOI] [PubMed] [Google Scholar]
  10. Brune H., Deutsch-Wenzel R. P., Habs M., Ivankovic S., Schmähl D. Investigation of the tumorigenic response to benzo(a)pyrene in aqueous caffeine solution applied orally to Sprague-Dawley rats. J Cancer Res Clin Oncol. 1981;102(2):153–157. doi: 10.1007/BF00410666. [DOI] [PubMed] [Google Scholar]
  11. Brunnemann K. D., Cox J. E., Hoffmann D. Analysis of tobacco-specific N-nitrosamines in indoor air. Carcinogenesis. 1992 Dec;13(12):2415–2418. doi: 10.1093/carcin/13.12.2415. [DOI] [PubMed] [Google Scholar]
  12. Brunnemann K. D., Hoffmann D. Assessment of the carcinogenic N-nitrosodiethanolamine in tobacco products and tobacco smoke. Carcinogenesis. 1981;2(11):1123–1127. doi: 10.1093/carcin/2.11.1123. [DOI] [PubMed] [Google Scholar]
  13. Brunnemann K. D., Yu L., Hoffmann D. Assessment of carcinogenic volatile N-nitrosamines in tobacco and in mainstream and sidestream smoke from cigarettes. Cancer Res. 1977 Sep;37(9):3218–3222. [PubMed] [Google Scholar]
  14. Carmella S. G., Kagan S. S., Kagan M., Foiles P. G., Palladino G., Quart A. M., Quart E., Hecht S. S. Mass spectrometric analysis of tobacco-specific nitrosamine hemoglobin adducts in snuff dippers, smokers, and nonsmokers. Cancer Res. 1990 Sep 1;50(17):5438–5445. [PubMed] [Google Scholar]
  15. Carrer P., Maroni M., Alcini D., Cavallo D., Fustinoni S., Lovato L., Visigalli F. Assessment through environmental and biological measurements of total daily exposure to volatile organic compounds of office workers in Milan, Italy. Indoor Air. 2000 Dec;10(4):258–268. doi: 10.1034/j.1600-0668.2000.010004258.x. [DOI] [PubMed] [Google Scholar]
  16. Crawford F. G., Mayer J., Santella R. M., Cooper T. B., Ottman R., Tsai W. Y., Simon-Cereijido G., Wang M., Tang D., Perera F. P. Biomarkers of environmental tobacco smoke in preschool children and their mothers. J Natl Cancer Inst. 1994 Sep 21;86(18):1398–1402. doi: 10.1093/jnci/86.18.1398. [DOI] [PubMed] [Google Scholar]
  17. Culp S. J., Gaylor D. W., Sheldon W. G., Goldstein L. S., Beland F. A. A comparison of the tumors induced by coal tar and benzo[a]pyrene in a 2-year bioassay. Carcinogenesis. 1998 Jan;19(1):117–124. doi: 10.1093/carcin/19.1.117. [DOI] [PubMed] [Google Scholar]
  18. Daube H., Scherer G., Riedel K., Ruppert T., Tricker A. R., Rosenbaum P., Adlkofer F. DNA adducts in human placenta in relation to tobacco smoke exposure and plasma antioxidant status. J Cancer Res Clin Oncol. 1997;123(3):141–151. doi: 10.1007/BF01214666. [DOI] [PubMed] [Google Scholar]
  19. Deutsch-Wenzel R. P., Brune H., Grimmer G., Dettbarn G., Misfeld J. Experimental studies in rat lungs on the carcinogenicity and dose-response relationships of eight frequently occurring environmental polycyclic aromatic hydrocarbons. J Natl Cancer Inst. 1983 Sep;71(3):539–544. [PubMed] [Google Scholar]
  20. Farchi S., Forastiere F., Pistelli R., Baldacci S., Simoni M., Perucci C. A., Viegi G., SEASD Group Exposure to environmental tobacco smoke is associated with lower plasma beta-carotene levels among nonsmoking women married to a smoker. Cancer Epidemiol Biomarkers Prev. 2001 Aug;10(8):907–909. [PubMed] [Google Scholar]
  21. Ferri E. S., Baratta E. J. Polonium 210 in tobacco, cigarette smoke, and selected human organs. Public Health Rep. 1966 Feb;81(2):121–127. [PMC free article] [PubMed] [Google Scholar]
  22. Georgiadis P., Topinka J., Stoikidou M., Kaila S., Gioka M., Katsouyanni K., Sram R., Autrup H., Kyrtopoulos S. A., AULIS Network Biomarkers of genotoxicity of air pollution (the AULIS project): bulky DNA adducts in subjects with moderate to low exposures to airborne polycyclic aromatic hydrocarbons and their relationship to environmental tobacco smoke and other parameters. Carcinogenesis. 2001 Sep;22(9):1447–1457. doi: 10.1093/carcin/22.9.1447. [DOI] [PubMed] [Google Scholar]
  23. Grimmer G., Dettbarn G., Seidel A., Jacob J. Detection of carcinogenic aromatic amines in the urine of non-smokers. Sci Total Environ. 2000 Feb 28;247(1):81–90. doi: 10.1016/s0048-9697(99)00471-4. [DOI] [PubMed] [Google Scholar]
  24. Grimmer G., Naujack K. W., Dettbarn G. Gaschromatographic determination of polycyclic aromatic hydrocarbons, aza-arenes, aromatic amines in the particle and vapor phase of mainstream and sidestream smoke of cigarettes. Toxicol Lett. 1987 Jan;35(1):117–124. doi: 10.1016/0378-4274(87)90095-6. [DOI] [PubMed] [Google Scholar]
  25. Hammond S. K., Coghlin J., Gann P. H., Paul M., Taghizadeh K., Skipper P. L., Tannenbaum S. R. Relationship between environmental tobacco smoke exposure and carcinogen-hemoglobin adduct levels in nonsmokers. J Natl Cancer Inst. 1993 Mar 17;85(6):474–478. doi: 10.1093/jnci/85.6.474. [DOI] [PubMed] [Google Scholar]
  26. Hanahan D., Weinberg R. A. The hallmarks of cancer. Cell. 2000 Jan 7;100(1):57–70. doi: 10.1016/s0092-8674(00)81683-9. [DOI] [PubMed] [Google Scholar]
  27. Hecht S. S. Biochemistry, biology, and carcinogenicity of tobacco-specific N-nitrosamines. Chem Res Toxicol. 1998 Jun;11(6):559–603. doi: 10.1021/tx980005y. [DOI] [PubMed] [Google Scholar]
  28. Hecht S. S., Carmella S. G., Murphy S. E., Akerkar S., Brunnemann K. D., Hoffmann D. A tobacco-specific lung carcinogen in the urine of men exposed to cigarette smoke. N Engl J Med. 1993 Nov 18;329(21):1543–1546. doi: 10.1056/NEJM199311183292105. [DOI] [PubMed] [Google Scholar]
  29. Hecht S. S., Carmella S. G., Murphy S. E. Tobacco-specific nitrosamine-hemoglobin adducts. Methods Enzymol. 1994;231:657–667. doi: 10.1016/0076-6879(94)31046-7. [DOI] [PubMed] [Google Scholar]
  30. Hecht S. S., Hoffmann D. Tobacco-specific nitrosamines, an important group of carcinogens in tobacco and tobacco smoke. Carcinogenesis. 1988 Jun;9(6):875–884. doi: 10.1093/carcin/9.6.875. [DOI] [PubMed] [Google Scholar]
  31. Hecht S. S. Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst. 1999 Jul 21;91(14):1194–1210. doi: 10.1093/jnci/91.14.1194. [DOI] [PubMed] [Google Scholar]
  32. Hecht S. S., Ye M., Carmella S. G., Fredrickson A., Adgate J. L., Greaves I. A., Church T. R., Ryan A. D., Mongin S. J., Sexton K. Metabolites of a tobacco-specific lung carcinogen in the urine of elementary school-aged children. Cancer Epidemiol Biomarkers Prev. 2001 Nov;10(11):1109–1116. [PubMed] [Google Scholar]
  33. Hoepfner I., Dettbarn G., Scherer G., Grimmer G., Adlkofer F. Hydroxy-phenanthrenes in the urine of non-smokers and smokers. Toxicol Lett. 1987 Jan;35(1):67–71. doi: 10.1016/0378-4274(87)90087-7. [DOI] [PubMed] [Google Scholar]
  34. Hoffmann D., Adams J. D., Brunnemann K. D. A critical look at N-nitrosamines in environmental tobacco smoke. Toxicol Lett. 1987 Jan;35(1):1–8. doi: 10.1016/0378-4274(87)90079-8. [DOI] [PubMed] [Google Scholar]
  35. Hoffmann D., Hoffmann I., El-Bayoumy K. The less harmful cigarette: a controversial issue. a tribute to Ernst L. Wynder. Chem Res Toxicol. 2001 Jul;14(7):767–790. doi: 10.1021/tx000260u. [DOI] [PubMed] [Google Scholar]
  36. Holz O., Krause T., Scherer G., Schmidt-Preuss U., Rüdiger H. W. 32P-postlabelling analysis of DNA adducts in monocytes of smokers and passive smokers. Int Arch Occup Environ Health. 1990;62(4):299–303. doi: 10.1007/BF00640837. [DOI] [PubMed] [Google Scholar]
  37. Howard D. J., Ota R. B., Briggs L. A., Hampton M., Pritsos C. A. Environmental tobacco smoke in the workplace induces oxidative stress in employees, including increased production of 8-hydroxy-2'-deoxyguanosine. Cancer Epidemiol Biomarkers Prev. 1998 Feb;7(2):141–146. [PubMed] [Google Scholar]
  38. Kerns W. D., Pavkov K. L., Donofrio D. J., Gralla E. J., Swenberg J. A. Carcinogenicity of formaldehyde in rats and mice after long-term inhalation exposure. Cancer Res. 1983 Sep;43(9):4382–4392. [PubMed] [Google Scholar]
  39. Kim Y. M., Harrad S., Harrison R. M. Concentrations and sources of VOCs in urban domestic and public microenvironments. Environ Sci Technol. 2001 Mar 15;35(6):997–1004. doi: 10.1021/es000192y. [DOI] [PubMed] [Google Scholar]
  40. Kopplin A., Eberle-Adamkiewicz G., Glüsenkamp K. H., Nehls P., Kirstein U. Urinary excretion of 3-methyladenine and 3-ethyladenine after controlled exposure to tobacco smoke. Carcinogenesis. 1995 Nov;16(11):2637–2641. doi: 10.1093/carcin/16.11.2637. [DOI] [PubMed] [Google Scholar]
  41. Liu Y. Y., Schmeltz I., Hoffmann D. Chemical studies on tobacco smoke. Quantitative analysis of hydrazine in tobacco and cigarette smoke. Anal Chem. 1974 Jun;46(7):885–889. doi: 10.1021/ac60343a046. [DOI] [PubMed] [Google Scholar]
  42. Maclure M., Katz R. B., Bryant M. S., Skipper P. L., Tannenbaum S. R. Elevated blood levels of carcinogens in passive smokers. Am J Public Health. 1989 Oct;79(10):1381–1384. doi: 10.2105/ajph.79.10.1381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Nielsen P. S., Okkels H., Sigsgaard T., Kyrtopoulos S., Autrup H. Exposure to urban and rural air pollution: DNA and protein adducts and effect of glutathione-S-transferase genotype on adduct levels. Int Arch Occup Environ Health. 1996;68(3):170–176. doi: 10.1007/BF00381627. [DOI] [PubMed] [Google Scholar]
  44. Parsons W. D., Carmella S. G., Akerkar S., Bonilla L. E., Hecht S. S. A metabolite of the tobacco-specific lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in the urine of hospital workers exposed to environmental tobacco smoke. Cancer Epidemiol Biomarkers Prev. 1998 Mar;7(3):257–260. [PubMed] [Google Scholar]
  45. Pignatelli B., Li C. Q., Boffetta P., Chen Q., Ahrens W., Nyberg F., Mukeria A., Bruske-Hohlfeld I., Fortes C., Constantinescu V. Nitrated and oxidized plasma proteins in smokers and lung cancer patients. Cancer Res. 2001 Jan 15;61(2):778–784. [PubMed] [Google Scholar]
  46. Pryor W. A., Prier D. G., Church D. F. Electron-spin resonance study of mainstream and sidestream cigarette smoke: nature of the free radicals in gas-phase smoke and in cigarette tar. Environ Health Perspect. 1983 Jan;47:345–355. doi: 10.1289/ehp.8347345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Pryor W. A., Stone K., Zang L. Y., Bermúdez E. Fractionation of aqueous cigarette tar extracts: fractions that contain the tar radical cause DNA damage. Chem Res Toxicol. 1998 May;11(5):441–448. doi: 10.1021/tx970159y. [DOI] [PubMed] [Google Scholar]
  48. Richter E., Rösler S., Scherer G., Gostomzyk J. G., Grübl A., Krämer U., Behrendt H. Haemoglobin adducts from aromatic amines in children in relation to area of residence and exposure to environmental tobacco smoke. Int Arch Occup Environ Health. 2001 Aug;74(6):421–428. doi: 10.1007/s004200100243. [DOI] [PubMed] [Google Scholar]
  49. Ruppert T., Scherer G., Tricker A. R., Adlkofer F. trans,trans-muconic acid as a biomarker of non-occupational environmental exposure to benzene. Int Arch Occup Environ Health. 1997;69(4):247–251. doi: 10.1007/s004200050143. [DOI] [PubMed] [Google Scholar]
  50. Scherer G., Conze C., Tricker A. R., Adlkofer F. Uptake of tobacco smoke constituents on exposure to environmental tobacco smoke (ETS). Clin Investig. 1992 Mar-Apr;70(3-4):352–367. doi: 10.1007/BF00184672. [DOI] [PubMed] [Google Scholar]
  51. Scherer G., Doolittle D. J., Ruppert T., Meger-Kossien I., Riedel K., Tricker A. R., Adlkofer F. Urinary mutagenicity and thioethers in nonsmokers: role of environmental tobacco smoke (ETS) and diet. Mutat Res. 1996 Jul 5;368(3-4):195–204. doi: 10.1016/s0165-1218(96)90061-0. [DOI] [PubMed] [Google Scholar]
  52. Scherer G., Frank S., Riedel K., Meger-Kossien I., Renner T. Biomonitoring of exposure to polycyclic aromatic hydrocarbons of nonoccupationally exposed persons. Cancer Epidemiol Biomarkers Prev. 2000 Apr;9(4):373–380. [PubMed] [Google Scholar]
  53. Scherer G., Meger-Kossien I., Riedel K., Renner T., Meger M. Assessment of the exposure of children to environmental tobacco smoke (ETS) by different methods. Hum Exp Toxicol. 1999 Apr;18(4):297–301. doi: 10.1191/096032799678840075. [DOI] [PubMed] [Google Scholar]
  54. Scherer G., Renner T., Meger M. Analysis and evaluation of trans,trans-muconic acid as a biomarker for benzene exposure. J Chromatogr B Biomed Sci Appl. 1998 Oct 9;717(1-2):179–199. doi: 10.1016/s0378-4347(98)00065-6. [DOI] [PubMed] [Google Scholar]
  55. Scherer G., Richter E. Biomonitoring exposure to environmental tobacco smoke (ETS): a critical reappraisal. Hum Exp Toxicol. 1997 Aug;16(8):449–459. doi: 10.1177/096032719701600806. [DOI] [PubMed] [Google Scholar]
  56. Siwińska E., Mielzyńska D., Bubak A., Smolik E. The effect of coal stoves and environmental tobacco smoke on the level of urinary 1-hydroxypyrene. Mutat Res. 1999 Sep 30;445(2):147–153. doi: 10.1016/s1383-5718(99)00121-7. [DOI] [PubMed] [Google Scholar]
  57. Smith C. J., Bombick D. W., Ryan B. A., Morgan W. T., Doolittle D. J. Urinary mutagenicity in nonsmokers following exposure to fresh diluted sidestream cigarette smoke. Mutat Res. 2000 Oct 10;470(1):53–70. doi: 10.1016/s1383-5718(00)00097-8. [DOI] [PubMed] [Google Scholar]
  58. Swauger J. E., Steichen T. J., Murphy P. A., Kinsler S. An analysis of the mainstream smoke chemistry of samples of the U.S. cigarette market acquired between 1995 and 2000. Regul Toxicol Pharmacol. 2002 Apr;35(2 Pt 1):142–156. doi: 10.1006/rtph.2001.1521. [DOI] [PubMed] [Google Scholar]
  59. Tang D., Warburton D., Tannenbaum S. R., Skipper P., Santella R. M., Cereijido G. S., Crawford F. G., Perera F. P. Molecular and genetic damage from environmental tobacco smoke in young children. Cancer Epidemiol Biomarkers Prev. 1999 May;8(5):427–431. [PubMed] [Google Scholar]
  60. Thyssen J., Althoff J., Kimmerle G., Mohr U. Inhalation studies with benzo[a]pyrene in Syrian golden hamsters. J Natl Cancer Inst. 1981 Mar;66(3):575–577. [PubMed] [Google Scholar]
  61. Van Rooij J. G., Veeger M. M., Bodelier-Bade M. M., Scheepers P. T., Jongeneelen F. J. Smoking and dietary intake of polycyclic aromatic hydrocarbons as sources of interindividual variability in the baseline excretion of 1-hydroxypyrene in urine. Int Arch Occup Environ Health. 1994;66(1):55–65. doi: 10.1007/BF00386580. [DOI] [PubMed] [Google Scholar]
  62. Wallace L., Pellizzari E., Hartwell T. D., Perritt R., Ziegenfus R. Exposures to benzene and other volatile compounds from active and passive smoking. Arch Environ Health. 1987 Sep-Oct;42(5):272–279. doi: 10.1080/00039896.1987.9935820. [DOI] [PubMed] [Google Scholar]
  63. Weaver V. M., Davoli C. T., Heller P. J., Fitzwilliam A., Peters H. L., Sunyer J., Murphy S. E., Goldstein G. W., Groopman J. D. Benzene exposure, assessed by urinary trans,trans-muconic acid, in urban children with elevated blood lead levels. Environ Health Perspect. 1996 Mar;104(3):318–323. doi: 10.1289/ehp.96104318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Yu R., Weisel C. P. Measurement of the urinary benzene metabolite trans,trans-muconic acid from benzene exposure in humans. J Toxicol Environ Health. 1996 Aug 9;48(5):453–477. doi: 10.1080/009841096161186. [DOI] [PubMed] [Google Scholar]
  65. van Zeeland A. A., de Groot A. J., Hall J., Donato F. 8-Hydroxydeoxyguanosine in DNA from leukocytes of healthy adults: relationship with cigarette smoking, environmental tobacco smoke, alcohol and coffee consumption. Mutat Res. 1999 Feb 19;439(2):249–257. doi: 10.1016/s1383-5718(98)00192-2. [DOI] [PubMed] [Google Scholar]

Articles from Tobacco Control are provided here courtesy of BMJ Publishing Group

RESOURCES