Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Feb;177(3):491–496. doi: 10.1128/jb.177.3.491-496.1995

Inorganic polyphosphate: toward making a forgotten polymer unforgettable.

A Kornberg 1
PMCID: PMC176618  PMID: 7836277

Abstract

Pursuit of the enzymes that make and degrade poly P has provided analytic reagents which confirm the ubiquity of poly P in microbes and animals and provide reliable means for measuring very low concentrations. Many distinctive functions appear likely for poly P, depending on its abundance, chain length, biologic source, and subcellular location. These include being an energy supply and ATP substitute, a reservoir for Pi, a chelator of metals, a buffer against alkali, a channel for DNA entry, a cell capsule and, of major interest, a regulator of responses to stresses and adjustments for survival in the stationary phase of culture growth and development. Whether microbe or human, we depend on adaptations in the stationary phase, which is really a dynamic phase of life. Much attention has been focused on the early and reproductive phases of organisms, which are rather brief intervals of rapid growth, but more concern needs to be given to the extensive period of maturity. Survival of microbial species depends on being able to manage in the stationary phase. In view of the universality and complexity of basic biochemical mechanisms, it would be surprising if some of the variety of poly P functions observed in microorganisms did not apply to aspects of human growth and development, such as aging and the aberrations of disease. Of theoretical interest regarding poly P is its antiquity in prebiotic evolution, which along with its high energy and phosphate content make it a plausible precursor to RNA, DNA, and proteins. Practical interest in poly P includes many industrial applications, among which is its use in the microbial depollution of P1 in marine environments.

Full Text

The Full Text of this article is available as a PDF (190.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahn K., Kornberg A. Polyphosphate kinase from Escherichia coli. Purification and demonstration of a phosphoenzyme intermediate. J Biol Chem. 1990 Jul 15;265(20):11734–11739. [PubMed] [Google Scholar]
  2. Akiyama M., Crooke E., Kornberg A. An exopolyphosphatase of Escherichia coli. The enzyme and its ppx gene in a polyphosphate operon. J Biol Chem. 1993 Jan 5;268(1):633–639. [PubMed] [Google Scholar]
  3. Akiyama M., Crooke E., Kornberg A. The polyphosphate kinase gene of Escherichia coli. Isolation and sequence of the ppk gene and membrane location of the protein. J Biol Chem. 1992 Nov 5;267(31):22556–22561. [PubMed] [Google Scholar]
  4. Andreeva N. A., Okorokov L. A. Purification and characterization of highly active and stable polyphosphatase from Saccharomyces cerevisiae cell envelope. Yeast. 1993 Feb;9(2):127–139. doi: 10.1002/yea.320090204. [DOI] [PubMed] [Google Scholar]
  5. Archibald F. S., Fridovich I. Investigations of the state of the manganese in Lactobacillus plantarum. Arch Biochem Biophys. 1982 May;215(2):589–596. doi: 10.1016/0003-9861(82)90120-5. [DOI] [PubMed] [Google Scholar]
  6. Aronova M. Z. Obnaruzhenie vtorichnochuvstvuiushchikh retseptornykh kletok v aboral'nom organe grebnevikov. Zh Evol Biokhim Fiziol. 1974 Sep-Oct;10(5):533–536. [PubMed] [Google Scholar]
  7. Bonting C. F., Kortstee G. J., Zehnder A. J. Properties of polyphosphate: AMP phosphotransferase of Acinetobacter strain 210A. J Bacteriol. 1991 Oct;173(20):6484–6488. doi: 10.1128/jb.173.20.6484-6488.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Butler L. A suggested approach to ATP regeneration for enzyme technology applications. Biotechnol Bioeng. 1977 Apr;19(4):591–593. doi: 10.1002/bit.260190415. [DOI] [PubMed] [Google Scholar]
  9. Cowling R. T., Birnboim H. C. Incorporation of [32P]orthophosphate into inorganic polyphosphates by human granulocytes and other human cell types. J Biol Chem. 1994 Apr 1;269(13):9480–9485. [PubMed] [Google Scholar]
  10. Crooke E., Akiyama M., Rao N. N., Kornberg A. Genetically altered levels of inorganic polyphosphate in Escherichia coli. J Biol Chem. 1994 Mar 4;269(9):6290–6295. [PubMed] [Google Scholar]
  11. Dunn T., Gable K., Beeler T. Regulation of cellular Ca2+ by yeast vacuoles. J Biol Chem. 1994 Mar 11;269(10):7273–7278. [PubMed] [Google Scholar]
  12. Gabel N. W., Thomas V. Evidence for the occurrence and distribution of inorganic polyphosphates in vertebrate tissues. J Neurochem. 1971 Jul;18(7):1229–1242. doi: 10.1111/j.1471-4159.1971.tb00222.x. [DOI] [PubMed] [Google Scholar]
  13. Hardoyo, Yamada K., Shinjo H., Kato J., Ohtake H. Production and release of polyphosphate by a genetically engineered strain of Escherichia coli. Appl Environ Microbiol. 1994 Oct;60(10):3485–3490. doi: 10.1128/aem.60.10.3485-3490.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Harold F. M. Inorganic polyphosphates in biology: structure, metabolism, and function. Bacteriol Rev. 1966 Dec;30(4):772–794. doi: 10.1128/br.30.4.772-794.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Harris R. S., Longerich S., Rosenberg S. M. Recombination in adaptive mutation. Science. 1994 Apr 8;264(5156):258–260. doi: 10.1126/science.8146657. [DOI] [PubMed] [Google Scholar]
  16. Hsieh P. C., Shenoy B. C., Jentoft J. E., Phillips N. F. Purification of polyphosphate and ATP glucose phosphotransferase from Mycobacterium tuberculosis H37Ra: evidence that poly(P) and ATP glucokinase activities are catalyzed by the same enzyme. Protein Expr Purif. 1993 Feb;4(1):76–84. doi: 10.1006/prep.1993.1012. [DOI] [PubMed] [Google Scholar]
  17. KORNBERG A., KORNBERG S. R., SIMMS E. S. Metaphosphate synthesis by an enzyme from Escherichia coli. Biochim Biophys Acta. 1956 Apr;20(1):215–227. doi: 10.1016/0006-3002(56)90280-3. [DOI] [PubMed] [Google Scholar]
  18. KORNBERG A. Pyrophosphorylases and phosphorylases in biosynthetic reactions. Adv Enzymol Relat Subj Biochem. 1957;18:191–240. doi: 10.1002/9780470122631.ch5. [DOI] [PubMed] [Google Scholar]
  19. KORNBERG S. R. Adenosine triphosphate synthesis from polyphosphate by an enzyme from Escherichia coli. Biochim Biophys Acta. 1957 Nov;26(2):294–300. doi: 10.1016/0006-3002(57)90008-2. [DOI] [PubMed] [Google Scholar]
  20. Keasling J. D., Bertsch L., Kornberg A. Guanosine pentaphosphate phosphohydrolase of Escherichia coli is a long-chain exopolyphosphatase. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7029–7033. doi: 10.1073/pnas.90.15.7029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kornberg A. ATP and inorganic pyro- and polyphosphate. Protein Sci. 1993 Jan;2(1):131–132. doi: 10.1002/pro.5560020116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nyrén P., Nore B. F., Strid A. Proton-pumping N,N'-dicyclohexylcarbodiimide-sensitive inorganic pyrophosphate synthase from Rhodospirillum rubrum: purification, characterization, and reconstitution. Biochemistry. 1991 Mar 19;30(11):2883–2887. doi: 10.1021/bi00225a022. [DOI] [PubMed] [Google Scholar]
  23. Offenbacher S., Kline E. S. Evidence for polyphosphate in phosphorylated nonhistone nuclear proteins. Arch Biochem Biophys. 1984 May 15;231(1):114–123. doi: 10.1016/0003-9861(84)90368-0. [DOI] [PubMed] [Google Scholar]
  24. Pick U., Weiss M. Polyphosphate Hydrolysis within Acidic Vacuoles in Response to Amine-Induced Alkaline Stress in the Halotolerant Alga Dunaliella salina. Plant Physiol. 1991 Nov;97(3):1234–1240. doi: 10.1104/pp.97.3.1234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pisoni R. L., Lindley E. R. Incorporation of [32P]orthophosphate into long chains of inorganic polyphosphate within lysosomes of human fibroblasts. J Biol Chem. 1992 Feb 25;267(6):3626–3631. [PubMed] [Google Scholar]
  26. Rao N. N., Torriani A. Molecular aspects of phosphate transport in Escherichia coli. Mol Microbiol. 1990 Jul;4(7):1083–1090. doi: 10.1111/j.1365-2958.1990.tb00682.x. [DOI] [PubMed] [Google Scholar]
  27. Reusch R. N., Sadoff H. L. Putative structure and functions of a poly-beta-hydroxybutyrate/calcium polyphosphate channel in bacterial plasma membranes. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4176–4180. doi: 10.1073/pnas.85.12.4176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Robinson N. A., Clark J. E., Wood H. G. Polyphosphate kinase from Propionibacterium shermanii. Demonstration that polyphosphates are primers and determination of the size of the synthesized polyphosphate. J Biol Chem. 1987 Apr 15;262(11):5216–5222. [PubMed] [Google Scholar]
  29. Rodriguez R. J. Polyphosphate present in DNA preparations from filamentous fungal species of Colletotrichum inhibits restriction endonucleases and other enzymes. Anal Biochem. 1993 Mar;209(2):291–297. doi: 10.1006/abio.1993.1122. [DOI] [PubMed] [Google Scholar]
  30. Siegele D. A., Kolter R. Life after log. J Bacteriol. 1992 Jan;174(2):345–348. doi: 10.1128/jb.174.2.345-348.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Skorko R. Polyphosphate as a source of phosphoryl group in protein modification in the archaebacterium Sulfolobus acidocaldarius. Biochimie. 1989 Sep-Oct;71(9-10):1089–1093. doi: 10.1016/0300-9084(89)90115-6. [DOI] [PubMed] [Google Scholar]
  32. Tinsley C. R., Manjula B. N., Gotschlich E. C. Purification and characterization of polyphosphate kinase from Neisseria meningitidis. Infect Immun. 1993 Sep;61(9):3703–3710. doi: 10.1128/iai.61.9.3703-3710.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Van Veen H. W., Abee T., Kleefsman A. W., Melgers B., Kortstee G. J., Konings W. N., Zehnder A. J. Energetics of alanine, lysine, and proline transport in cytoplasmic membranes of the polyphosphate-accumulating Acinetobacter johnsonii strain 210A. J Bacteriol. 1994 May;176(9):2670–2676. doi: 10.1128/jb.176.9.2670-2676.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Voelz H., Voelz U., Ortigoza R. O. The "polyphosphate overplus" phenomenon in Myxococcus xanthus and its influence on the architecture of the cell. Arch Mikrobiol. 1966 May 9;53(4):371–388. doi: 10.1007/BF00409874. [DOI] [PubMed] [Google Scholar]
  35. Wood H. G., Clark J. E. Biological aspects of inorganic polyphosphates. Annu Rev Biochem. 1988;57:235–260. doi: 10.1146/annurev.bi.57.070188.001315. [DOI] [PubMed] [Google Scholar]
  36. Wood H. G. Inorganic pyrophosphate and polyphosphates as sources of energy. Curr Top Cell Regul. 1985;26:355–369. doi: 10.1016/b978-0-12-152826-3.50034-6. [DOI] [PubMed] [Google Scholar]
  37. Wurst H., Kornberg A. A soluble exopolyphosphatase of Saccharomyces cerevisiae. Purification and characterization. J Biol Chem. 1994 Apr 15;269(15):10996–11001. [PubMed] [Google Scholar]
  38. Yamagata Y., Watanabe H., Saitoh M., Namba T. Volcanic production of polyphosphates and its relevance to prebiotic evolution. Nature. 1991 Aug 8;352(6335):516–519. doi: 10.1038/352516a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES