Full Text
The Full Text of this article is available as a PDF (244.6 KB).
Figure 1 .

Orally administered RDP58 reduces the severity of clinical symptoms during acute DSS colitis. Severity of colitis in DSS treated mice (n= 4) and DSS treated mice receiving RDP58 (n= 4). Results are expressed as the mean clinical activity scores for each group. Control groups included mice kept on regular drinking water and mice receiving regular water and given RDP58 by gavage. A higher value indicates more severe disease. Control groups including those receiving RDP58 in the absence of DSS treatment had a clinical activity scores between 0 and 1 (data not shown). The data shown are representative of three separate experiments.
Figure 2 .
RDP58 dramatically lessens macroscopic evidence of DSS induced colonic damage. Representative colon from a control untreated mouse (left), a mouse fed DSS for six days (middle), and from a DSS treated mouse given RDP58 (right). The colon from DSS treated mice showed evidence of atrophy and profuse bleeding. In contrast, the colon from DSS treated mice receiving RDP58 remained relatively normal.
Figure 3 .

Histological presentation of colitis in DSS treated mice and protective effect of orally administered RDP58 (Allotrap 1258). (A) RDP58 preserves the architecture and minimises ulceration of the colon in DSS treated mice. Representative histology from the colon of a control untreated mouse (top panel), a mouse fed DSS for six days (middle panel), and from a DSS treated mouse given RDP58 (bottom panel). Original magnifications x200. (B) Quantitative analysis of crypt damage. The crypt damage score is described in "Materials and methods" and by Boismenu and Chen20. *p<0.0001 compared with DSS treated mice.
Figure 4 .
RDP58 inhibits TNF production in the colon of DSS treated mice. (A) TNF mRNA expression was evaluated by RT-PCR as described in "Materials and methods", and the data were measured with a fluorescence imager (Molecular Dynamics, CA). *p<0.05 compared with control mice and **p<0.005 when compared with DSS treated mice. (B) TNF protein expression was measured from 18 hour culture supernatants of colon biopsy specimens as described in "Materials and methods". *p<0.05 when compared with DSS treated mice. Original magnification x200.
Figure 5 .
RDP58 reduces neutrophil infiltration in the colon of DSS treated mice. Tissue myeloperoxidase content was measured from colon samples removed from mice killed six days after initiation of DSS treatment as described in "Materials and methods". *p<0.05 compared with DSS treated mice. Comparison of values between DSS treated mice given RDP58 and control mice showed no significant differences.
Figure 6 .
RDP58 preserves colonic epithelial cell proliferation in DSS treated mice. Epithelial cell proliferation was measured by in vivo BrdU administration as described in "Materials and methods". *p<0.01 compared with DSS treated mice.
Figure 7 .

RDP58 blocks colonic epithelial cell apoptosis in DSS treated mice. Apoptosis was evaluated by the TUNEL assay as described in "Materials and methods". Representative TUNEL stained sections from the colon of a control untreated mouse (top panel), a mouse fed DSS for six days (middle panel), and from a DSS treated mouse given RDP58 (bottom panel). Original magnifications x200.
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baert F. J., D'Haens G. R., Peeters M., Hiele M. I., Schaible T. F., Shealy D., Geboes K., Rutgeerts P. J. Tumor necrosis factor alpha antibody (infliximab) therapy profoundly down-regulates the inflammation in Crohn's ileocolitis. Gastroenterology. 1999 Jan;116(1):22–28. doi: 10.1016/s0016-5085(99)70224-6. [DOI] [PubMed] [Google Scholar]
- Beutler B. A. The role of tumor necrosis factor in health and disease. J Rheumatol Suppl. 1999 May;57:16–21. [PubMed] [Google Scholar]
- Boismenu R., Chen Y. Insights from mouse models of colitis. J Leukoc Biol. 2000 Mar;67(3):267–278. doi: 10.1002/jlb.67.3.267. [DOI] [PubMed] [Google Scholar]
- Braegger C. P., Nicholls S., Murch S. H., Stephens S., MacDonald T. T. Tumour necrosis factor alpha in stool as a marker of intestinal inflammation. Lancet. 1992 Jan 11;339(8785):89–91. doi: 10.1016/0140-6736(92)90999-j. [DOI] [PubMed] [Google Scholar]
- Breese E. J., Michie C. A., Nicholls S. W., Murch S. H., Williams C. B., Domizio P., Walker-Smith J. A., MacDonald T. T. Tumor necrosis factor alpha-producing cells in the intestinal mucosa of children with inflammatory bowel disease. Gastroenterology. 1994 Jun;106(6):1455–1466. doi: 10.1016/0016-5085(94)90398-0. [DOI] [PubMed] [Google Scholar]
- Cooper H. S., Murthy S. N., Shah R. S., Sedergran D. J. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest. 1993 Aug;69(2):238–249. [PubMed] [Google Scholar]
- Cuturi M. C., Christoph F., Woo J., Iyer S., Brouard S., Heslan J. M., Pignon P., Soulillou J. P., Buelow R. RDP1258, a new rationally designed immunosuppressive peptide, prolongs allograft survival in rats: analysis of its mechanism of action. Mol Med. 1999 Dec;5(12):820–832. [PMC free article] [PubMed] [Google Scholar]
- D'haens G., Van Deventer S., Van Hogezand R., Chalmers D., Kothe C., Baert F., Braakman T., Schaible T., Geboes K., Rutgeerts P. Endoscopic and histological healing with infliximab anti-tumor necrosis factor antibodies in Crohn's disease: A European multicenter trial. Gastroenterology. 1999 May;116(5):1029–1034. doi: 10.1016/s0016-5085(99)70005-3. [DOI] [PubMed] [Google Scholar]
- Dieleman L. A., Palmen M. J., Akol H., Bloemena E., Peña A. S., Meuwissen S. G., Van Rees E. P. Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines. Clin Exp Immunol. 1998 Dec;114(3):385–391. doi: 10.1046/j.1365-2249.1998.00728.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dieleman L. A., Ridwan B. U., Tennyson G. S., Beagley K. W., Bucy R. P., Elson C. O. Dextran sulfate sodium-induced colitis occurs in severe combined immunodeficient mice. Gastroenterology. 1994 Dec;107(6):1643–1652. doi: 10.1016/0016-5085(94)90803-6. [DOI] [PubMed] [Google Scholar]
- Elson C. O., Sartor R. B., Tennyson G. S., Riddell R. H. Experimental models of inflammatory bowel disease. Gastroenterology. 1995 Oct;109(4):1344–1367. doi: 10.1016/0016-5085(95)90599-5. [DOI] [PubMed] [Google Scholar]
- Fiocchi C. Inflammatory bowel disease: etiology and pathogenesis. Gastroenterology. 1998 Jul;115(1):182–205. doi: 10.1016/s0016-5085(98)70381-6. [DOI] [PubMed] [Google Scholar]
- Grassy G., Calas B., Yasri A., Lahana R., Woo J., Iyer S., Kaczorek M., Floc'h R., Buelow R. Computer-assisted rational design of immunosuppressive compounds. Nat Biotechnol. 1998 Aug;16(8):748–752. doi: 10.1038/nbt0898-748. [DOI] [PubMed] [Google Scholar]
- Iyer S., Kontoyiannis D., Chevrier D., Woo J., Mori N., Cornejo M., Kollias G., Buelow R. Inhibition of tumor necrosis factor mRNA translation by a rationally designed immunomodulatory peptide. J Biol Chem. 2000 Jun 2;275(22):17051–17057. doi: 10.1074/jbc.M909219199. [DOI] [PubMed] [Google Scholar]
- Kitajima S., Takuma S., Morimoto M. Tissue distribution of dextran sulfate sodium (DSS) in the acute phase of murine DSS-induced colitis. J Vet Med Sci. 1999 Jan;61(1):67–70. doi: 10.1292/jvms.61.67. [DOI] [PubMed] [Google Scholar]
- Kojouharoff G., Hans W., Obermeier F., Männel D. N., Andus T., Schölmerich J., Gross V., Falk W. Neutralization of tumour necrosis factor (TNF) but not of IL-1 reduces inflammation in chronic dextran sulphate sodium-induced colitis in mice. Clin Exp Immunol. 1997 Feb;107(2):353–358. doi: 10.1111/j.1365-2249.1997.291-ce1184.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krawisz J. E., Sharon P., Stenson W. F. Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity. Assessment of inflammation in rat and hamster models. Gastroenterology. 1984 Dec;87(6):1344–1350. [PubMed] [Google Scholar]
- Li Y., Harte W. E. A review of molecular modeling approaches to pharmacophore models and structure-activity relationships of ion channel modulators in CNS. Curr Pharm Des. 2002;8(2):99–110. doi: 10.2174/1381612023396546. [DOI] [PubMed] [Google Scholar]
- MacDonald T. T., Hutchings P., Choy M. Y., Murch S., Cooke A. Tumour necrosis factor-alpha and interferon-gamma production measured at the single cell level in normal and inflamed human intestine. Clin Exp Immunol. 1990 Aug;81(2):301–305. doi: 10.1111/j.1365-2249.1990.tb03334.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maines M. D. The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol. 1997;37:517–554. doi: 10.1146/annurev.pharmtox.37.1.517. [DOI] [PubMed] [Google Scholar]
- Murch S. H., Braegger C. P., Walker-Smith J. A., MacDonald T. T. Location of tumour necrosis factor alpha by immunohistochemistry in chronic inflammatory bowel disease. Gut. 1993 Dec;34(12):1705–1709. doi: 10.1136/gut.34.12.1705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murthy S., Cooper H. S., Yoshitake H., Meyer C., Meyer C. J., Murthy N. S. Combination therapy of pentoxifylline and TNFalpha monoclonal antibody in dextran sulphate-induced mouse colitis. Aliment Pharmacol Ther. 1999 Feb;13(2):251–260. doi: 10.1046/j.1365-2036.1999.00457.x. [DOI] [PubMed] [Google Scholar]
- Neurath M. F., Fuss I., Pasparakis M., Alexopoulou L., Haralambous S., Meyer zum Büschenfelde K. H., Strober W., Kollias G. Predominant pathogenic role of tumor necrosis factor in experimental colitis in mice. Eur J Immunol. 1997 Jul;27(7):1743–1750. doi: 10.1002/eji.1830270722. [DOI] [PubMed] [Google Scholar]
- Okayasu I., Hatakeyama S., Yamada M., Ohkusa T., Inagaki Y., Nakaya R. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology. 1990 Mar;98(3):694–702. doi: 10.1016/0016-5085(90)90290-h. [DOI] [PubMed] [Google Scholar]
- Olson A. D., DelBuono E. A., Bitar K. N., Remick D. G. Antiserum to tumor necrosis factor and failure to prevent murine colitis. J Pediatr Gastroenterol Nutr. 1995 Nov;21(4):410–418. doi: 10.1097/00005176-199511000-00007. [DOI] [PubMed] [Google Scholar]
- Otterbein L., Sylvester S. L., Choi A. M. Hemoglobin provides protection against lethal endotoxemia in rats: the role of heme oxygenase-1. Am J Respir Cell Mol Biol. 1995 Nov;13(5):595–601. doi: 10.1165/ajrcmb.13.5.7576696. [DOI] [PubMed] [Google Scholar]
- Papadakis K. A., Targan S. R. Role of cytokines in the pathogenesis of inflammatory bowel disease. Annu Rev Med. 2000;51:289–298. doi: 10.1146/annurev.med.51.1.289. [DOI] [PubMed] [Google Scholar]
- Salvesen G. S., Dixit V. M. Caspases: intracellular signaling by proteolysis. Cell. 1997 Nov 14;91(4):443–446. doi: 10.1016/s0092-8674(00)80430-4. [DOI] [PubMed] [Google Scholar]
- Sandborn W. J., Hanauer S. B. Antitumor necrosis factor therapy for inflammatory bowel disease: a review of agents, pharmacology, clinical results, and safety. Inflamm Bowel Dis. 1999 May;5(2):119–133. doi: 10.1097/00054725-199905000-00008. [DOI] [PubMed] [Google Scholar]
- Stack W. A., Mann S. D., Roy A. J., Heath P., Sopwith M., Freeman J., Holmes G., Long R., Forbes A., Kamm M. A. Randomised controlled trial of CDP571 antibody to tumour necrosis factor-alpha in Crohn's disease. Lancet. 1997 Feb 22;349(9051):521–524. doi: 10.1016/s0140-6736(97)80083-9. [DOI] [PubMed] [Google Scholar]
- Steller H. Mechanisms and genes of cellular suicide. Science. 1995 Mar 10;267(5203):1445–1449. doi: 10.1126/science.7878463. [DOI] [PubMed] [Google Scholar]
- Taniguchi T., Tsukada H., Nakamura H., Kodama M., Fukuda K., Saito T., Miyasaka M., Seino Y. Effects of the anti-ICAM-1 monoclonal antibody on dextran sodium sulphate-induced colitis in rats. J Gastroenterol Hepatol. 1998 Sep;13(9):945–949. doi: 10.1111/j.1440-1746.1998.tb00766.x. [DOI] [PubMed] [Google Scholar]
- Targan S. R., Hanauer S. B., van Deventer S. J., Mayer L., Present D. H., Braakman T., DeWoody K. L., Schaible T. F., Rutgeerts P. J. A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn's disease. Crohn's Disease cA2 Study Group. N Engl J Med. 1997 Oct 9;337(15):1029–1035. doi: 10.1056/NEJM199710093371502. [DOI] [PubMed] [Google Scholar]
- Tessner T. G., Cohn S. M., Schloemann S., Stenson W. F. Prostaglandins prevent decreased epithelial cell proliferation associated with dextran sodium sulfate injury in mice. Gastroenterology. 1998 Oct;115(4):874–882. doi: 10.1016/s0016-5085(98)70259-8. [DOI] [PubMed] [Google Scholar]
- Tomoyose M., Mitsuyama K., Ishida H., Toyonaga A., Tanikawa K. Role of interleukin-10 in a murine model of dextran sulfate sodium-induced colitis. Scand J Gastroenterol. 1998 Apr;33(4):435–440. doi: 10.1080/00365529850171080. [DOI] [PubMed] [Google Scholar]
- Van Deventer S. J. Tumour necrosis factor and Crohn's disease. Gut. 1997 Apr;40(4):443–448. doi: 10.1136/gut.40.4.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Videla S., García-Lafuente A., Antolín M., Vilaseca J., Guarner F., Crespo E., González G., Salas A., Malagelada J. R. Antitumor necrosis factor therapy in rat chronic granulomatous colitis: critical dose-timing effects on outcome. J Pharmacol Exp Ther. 1998 Dec;287(3):854–859. [PubMed] [Google Scholar]
- Willis D., Moore A. R., Frederick R., Willoughby D. A. Heme oxygenase: a novel target for the modulation of the inflammatory response. Nat Med. 1996 Jan;2(1):87–90. doi: 10.1038/nm0196-87. [DOI] [PubMed] [Google Scholar]
- van Dullemen H. M., van Deventer S. J., Hommes D. W., Bijl H. A., Jansen J., Tytgat G. N., Woody J. Treatment of Crohn's disease with anti-tumor necrosis factor chimeric monoclonal antibody (cA2). Gastroenterology. 1995 Jul;109(1):129–135. doi: 10.1016/0016-5085(95)90277-5. [DOI] [PubMed] [Google Scholar]




