Abstract
We report the purification and enzymological characterization of Escherichia coli K-12 pyridoxine (pyridoxamine) 5'-phosphate (PNP/PMP) oxidase, which is a key committed enzyme in the biosynthesis of the essential coenzyme pyridoxal 5'-phosphate (PLP). The enzyme encoded by pdxH was overexpressed and purified to electrophoretic homogeneity by four steps of column chromatography. The purified PdxH enzyme is a thermally stable 51-kDa homodimer containing one molecule of flavin mononucleotide (FMN). In the presence of molecular oxygen, the PdxH enzyme uses PNP or PMP as a substrate (Km = 2 and 105 microM and kcat = 0.76 and 1.72 s-1 for PNP and PMP, respectively) and produces hydrogen peroxide. Thus, under aerobic conditions, the PdxH enzyme acts as a classical monofunctional flavoprotein oxidase with an extremely low kcat turnover number. Comparison of kcat/Km values suggests that PNP rather than PMP is the in vivo substrate of E. coli PdxH oxidase. In contrast, the eukaryotic enzyme has similar kcat/Km values for PNP and PMP and seems to act as a scavenger. E. coli PNP/PMP oxidase activities were competitively inhibited by the pathway end product, PLP, and by the analog, 4-deoxy-PNP, with Ki values of 8 and 105 microM, respectively. Immunoinhibition studies suggested that the catalytic domain of the enzyme may be composed of discontinuous residues on the polypeptide sequence. Two independent quantitation methods showed that PNP/PMP oxidase was present in about 700 to 1,200 dimer enzyme molecules per cell in E. coli growing exponentially in minimal medium plus glucose at 37 degrees C. Thus, E. coli PNP/PMP oxidase is an example of a relatively abundant, but catalytically sluggish, enzyme committed to PLP coenzyme biosynthesis.
Full Text
The Full Text of this article is available as a PDF (287.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arps P. J., Winkler M. E. An unusual genetic link between vitamin B6 biosynthesis and tRNA pseudouridine modification in Escherichia coli K-12. J Bacteriol. 1987 Mar;169(3):1071–1079. doi: 10.1128/jb.169.3.1071-1079.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Choi J. D., Bowers-Komro M., Davis M. D., Edmondson D. E., McCormick D. B. Kinetic properties of pyridoxamine (pyridoxine)-5'-phosphate oxidase from rabbit liver. J Biol Chem. 1983 Jan 25;258(2):840–845. [PubMed] [Google Scholar]
- Choi S. Y., Churchich J. E., Zaiden E., Kwok F. Brain pyridoxine-5-phosphate oxidase. Modulation of its catalytic activity by reaction with pyridoxal 5-phosphate and analogs. J Biol Chem. 1987 Sep 5;262(25):12013–12017. [PubMed] [Google Scholar]
- Churchich J. E. Brain pyridoxine-5-phosphate oxidase. A dimeric enzyme containing one FMN site. Eur J Biochem. 1984 Jan 16;138(2):327–332. doi: 10.1111/j.1432-1033.1984.tb07918.x. [DOI] [PubMed] [Google Scholar]
- DEMPSEY W. B. CONTROL OF PYRIDOXINE BIOSYNTHESIS IN ESCHERICHIA COLI. J Bacteriol. 1965 Aug;90:431–437. doi: 10.1128/jb.90.2.431-437.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dempsey W. B. Control of vitamin B 6 biosynthesis in Escherichia coli. J Bacteriol. 1971 Oct;108(1):415–421. doi: 10.1128/jb.108.1.415-421.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dempsey W. B. Synthesis of Pyridoxine by a Pyridoxal Auxotroph of Escherichia coli. J Bacteriol. 1966 Aug;92(2):333–337. doi: 10.1128/jb.92.2.333-337.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drewke C., Notheis C., Hansen U., Leistner E., Hemscheidt T., Hill R. E., Spenser I. D. Growth response to 4-hydroxy-L-threonine of Escherichia coli mutants blocked in vitamin B6 biosynthesis. FEBS Lett. 1993 Mar 1;318(2):125–128. doi: 10.1016/0014-5793(93)80005-f. [DOI] [PubMed] [Google Scholar]
- Faeder E. J., Siegel L. M. A rapid micromethod for determination of FMN and FAD in mixtures. Anal Biochem. 1973 May;53(1):332–336. doi: 10.1016/0003-2697(73)90442-9. [DOI] [PubMed] [Google Scholar]
- HENDERSON H. M. THE CONVERSION OF PYRIDOXINE PHOSPHATE INTO PYRIDOXAL PHOSPHATE IN ESCHERICHIA COLI. Biochem J. 1965 Jun;95:775–779. doi: 10.1042/bj0950775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hagen T. J., Shimkets L. J. Nucleotide sequence and transcriptional products of the csg locus of Myxococcus xanthus. J Bacteriol. 1990 Jan;172(1):15–23. doi: 10.1128/jb.172.1.15-23.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harbron S., Eggelte H. J., Rabin B. R. Amplified colorimetric assay of alkaline phosphatase using riboflavin 4'-phosphate: a simple method for measuring riboflavin and riboflavin 5'-phosphate. Anal Biochem. 1991 Oct;198(1):47–51. doi: 10.1016/0003-2697(91)90504-m. [DOI] [PubMed] [Google Scholar]
- Hedrick J. L., Fischer E. H. On the role of pyridoxal 5'-phosphate in phosphorylase. I. Absence of classical vitamin B6--dependent enzymatic activities in muscle glycogen phosphorylase. Biochemistry. 1965 Jul;4(7):1337–1343. doi: 10.1021/bi00883a018. [DOI] [PubMed] [Google Scholar]
- Hockney R. C., Scott T. A. The isolation and characterization of three types of vitamin B6 auxotrophs of Escherichia coli K12. J Gen Microbiol. 1979 Feb;110(2):275–283. doi: 10.1099/00221287-110-2-275. [DOI] [PubMed] [Google Scholar]
- Husain M., Edmondson D. E., Singer T. P. Kinetic studies on the catalytic mechanism of liver monoamine oxidase. Biochemistry. 1982 Feb 2;21(3):595–600. doi: 10.1021/bi00532a028. [DOI] [PubMed] [Google Scholar]
- Kazarinoff M. N., McCormick D. B. Rabbit liver pyridoxamine (pyridoxine) 5'-phosphate oxidase. Purification and properties. J Biol Chem. 1975 May 10;250(9):3436–3442. [PubMed] [Google Scholar]
- Kwok F., Churchich J. E. Brain pyridoxal kinase. Purification, substrate specificities, and sensitized photodestruction of an essential histidine. J Biol Chem. 1979 Jul 25;254(14):6489–6495. [PubMed] [Google Scholar]
- Kwon O., Kwok F., Churchich J. E. Catalytic and regulatory properties of native and chymotrypsin-treated pyridoxine-5-phosphate oxidase. J Biol Chem. 1991 Nov 25;266(33):22136–22140. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lam H. M., Tancula E., Dempsey W. B., Winkler M. E. Suppression of insertions in the complex pdxJ operon of Escherichia coli K-12 by lon and other mutations. J Bacteriol. 1992 Mar;174(5):1554–1567. doi: 10.1128/jb.174.5.1554-1567.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lam H. M., Winkler M. E. Characterization of the complex pdxH-tyrS operon of Escherichia coli K-12 and pleiotropic phenotypes caused by pdxH insertion mutations. J Bacteriol. 1992 Oct;174(19):6033–6045. doi: 10.1128/jb.174.19.6033-6045.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lam H. M., Winkler M. E. Metabolic relationships between pyridoxine (vitamin B6) and serine biosynthesis in Escherichia coli K-12. J Bacteriol. 1990 Nov;172(11):6518–6528. doi: 10.1128/jb.172.11.6518-6528.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindqvist Y., Brändén C. I., Mathews F. S., Lederer F. Spinach glycolate oxidase and yeast flavocytochrome b2 are structurally homologous and evolutionarily related enzymes with distinctly different function and flavin mononucleotide binding. J Biol Chem. 1991 Feb 15;266(5):3198–3207. [PubMed] [Google Scholar]
- Macheroux P., Massey V., Thiele D. J., Volokita M. Expression of spinach glycolate oxidase in Saccharomyces cerevisiae: purification and characterization. Biochemistry. 1991 May 7;30(18):4612–4619. doi: 10.1021/bi00232a036. [DOI] [PubMed] [Google Scholar]
- Morse D. E., Yanofsky C. Amber mutants of the trpR regulatory gene. J Mol Biol. 1969 Aug 28;44(1):185–193. doi: 10.1016/0022-2836(69)90413-6. [DOI] [PubMed] [Google Scholar]
- Morse D. E., Yanofsky C. The internal low-efficiency promoter of the tryptophan operon of Escherichia coli. J Mol Biol. 1968 Dec;38(3):447–451. doi: 10.1016/0022-2836(68)90401-4. [DOI] [PubMed] [Google Scholar]
- POGELL B. M. Enzymatic oxidation of pyridoxamine phosphate to pyridoxal phosphate in rabbit liver. J Biol Chem. 1958 Jun;232(2):761–776. [PubMed] [Google Scholar]
- Porter D. J., Bright H. J. Propionate-3-nitronate oxidase from Penicillium atrovenetum is a flavoprotein which initiates the autoxidation of its substrate by O2. J Biol Chem. 1987 Oct 25;262(30):14428–14434. [PubMed] [Google Scholar]
- Porter T. D., Kasper C. B. NADPH-cytochrome P-450 oxidoreductase: flavin mononucleotide and flavin adenine dinucleotide domains evolved from different flavoproteins. Biochemistry. 1986 Apr 8;25(7):1682–1687. doi: 10.1021/bi00355a036. [DOI] [PubMed] [Google Scholar]
- Roa B. B., Connolly D. M., Winkler M. E. Overlap between pdxA and ksgA in the complex pdxA-ksgA-apaG-apaH operon of Escherichia coli K-12. J Bacteriol. 1989 Sep;171(9):4767–4777. doi: 10.1128/jb.171.9.4767-4777.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SNELL E. E. Chemical structure in relation to biological activities of vitamin B6. Vitam Horm. 1958;16:77–125. doi: 10.1016/s0083-6729(08)60314-3. [DOI] [PubMed] [Google Scholar]
- Shimkets L. J. The Myxococcus xanthus FprA protein causes increased flavin biosynthesis in Escherichia coli. J Bacteriol. 1990 Jan;172(1):24–30. doi: 10.1128/jb.172.1.24-30.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stock A., Ortanderl F., Pfleiderer G. Darstellung von radioaktiv markiertem Pyridoxal-5'-phosphat. Biochem Z. 1966 Jun 7;344(4):353–360. [PubMed] [Google Scholar]
- TURNER J. M., HAPPOLD F. C. Pyridoxamine phosphate-oxidase and pyridoxal phosphate-phosphatase activities in Escherichia coli. Biochem J. 1961 Feb;78:364–372. doi: 10.1042/bj0780364. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WADA H., SNELL E. E. The enzymatic oxidation of pyridoxine and pyridoxamine phosphates. J Biol Chem. 1961 Jul;236:2089–2095. [PubMed] [Google Scholar]
- White R. S., Dempsey W. B. Purification and properties of vitamin B6 kinase from Escherichia coli B. Biochemistry. 1970 Oct 13;9(21):4057–4064. doi: 10.1021/bi00823a005. [DOI] [PubMed] [Google Scholar]
