Full Text
The Full Text of this article is available as a PDF (157.6 KB).
Figure 1 .
Confocal micrographs of whole mount preparations showing double labelling with the receptor tyrosine kinase, Kit (FITC; A) and nitric oxide synthase (NOS; Texas Red; B) or vesicular acetylcholine transporter (vAChT) antibodies in the circular muscle layer of the murine gastric fundus. (A) Spindle shaped interstitial cells of circular and longitudinal muscle (IC-IM) immunopositive for Kit (green; arrows) within the circular muscle layer. (B) NOS-LI in enteric inhibitory nerves (arrows); IC-IM also appeared immunoreactive for NOS (C). (D, E) Double labelling of Kit (D) and vAChT (E). Double labelling of Kit-LI and vAChT-LI is shown in (F). Courtesy of Wang et al.30
Figure 2 .
Model for current concept of enteric motor neurotransmission. Transmitter is released from nerve varicosities and diffuses through a loosely defined postjunctional volume with subsequent binding and activation of receptors expressed on neighbouring smooth muscle cells. Excitatory or inhibitory responses are dependent on the type and number of receptors activated.
Figure 3 .
Alternative model consistent with recent morphological and physiological data is a refinement of the concept first proposed by Cajal18 and later by Daniel and Posey-Daniel.32 Neurotransmitter released from enteric motor neurones binds primarily to receptors expressed by interstitial cells of Cajal (ICCs). Activation (depolarisation or hyperpolarisation) of neighbouring smooth muscle cells occurs by conduction of excitatory or inhibitory junction potentials via gap junctions between ICCs and smooth muscle cells. Thus terminals of enteric motorneurones, interstitial cells of circular and longitudinal muscle (IC-IM), and smooth muscle cells form functional units that release transmitter and mediate and transduce neural inputs into mechanical responses. IC-IM appear to be a critical component in these functional units. The physically close association between varicose nerve terminals and ICCs suggests specialised neuro-ICC junctions may be the primary sites of innervation.
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berezin I., Huizinga J. D., Farraway L., Daniel E. E. Innervation of interstitial cells of Cajal by vasoactive intestinal polypeptide containing nerves in canine colon. Can J Physiol Pharmacol. 1990 Jul;68(7):922–932. doi: 10.1139/y90-141. [DOI] [PubMed] [Google Scholar]
- Burns A. J., Herbert T. M., Ward S. M., Sanders K. M. Interstitial cells of Cajal in the guinea-pig gastrointestinal tract as revealed by c-Kit immunohistochemistry. Cell Tissue Res. 1997 Oct;290(1):11–20. doi: 10.1007/s004410050902. [DOI] [PubMed] [Google Scholar]
- Burns A. J., Lomax A. E., Torihashi S., Sanders K. M., Ward S. M. Interstitial cells of Cajal mediate inhibitory neurotransmission in the stomach. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):12008–12013. doi: 10.1073/pnas.93.21.12008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burnstock G. Review lecture. Neurotransmitters and trophic factors in the autonomic nervous system. J Physiol. 1981;313:1–35. doi: 10.1113/jphysiol.1981.sp013648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daniel E. E., Posey-Daniel V. Neuromuscular structures in opossum esophagus: role of interstitial cells of Cajal. Am J Physiol. 1984 Mar;246(3 Pt 1):G305–G315. doi: 10.1152/ajpgi.1984.246.3.G305. [DOI] [PubMed] [Google Scholar]
- Faussone Pellegrini M. S. Morphogenesis of the special circular muscle layer and of the interstitial cells of Cajal related to the plexus muscularis profundus of mouse intestinal muscle coat. An E.M. study. Anat Embryol (Berl) 1984;169(2):151–158. doi: 10.1007/BF00303144. [DOI] [PubMed] [Google Scholar]
- Hara Y., Kubota M., Szurszewski J. H. Electrophysiology of smooth muscle of the small intestine of some mammals. J Physiol. 1986 Mar;372:501–520. doi: 10.1113/jphysiol.1986.sp016022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huizinga J. D., Berezin I., Daniel E. E., Chow E. Inhibitory innervation of colonic smooth muscle cells and interstitial cells of Cajal. Can J Physiol Pharmacol. 1990 Mar;68(3):447–454. doi: 10.1139/y90-063. [DOI] [PubMed] [Google Scholar]
- Huizinga J. D., Thuneberg L., Klüppel M., Malysz J., Mikkelsen H. B., Bernstein A. W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature. 1995 Jan 26;373(6512):347–349. doi: 10.1038/373347a0. [DOI] [PubMed] [Google Scholar]
- Langton P., Ward S. M., Carl A., Norell M. A., Sanders K. M. Spontaneous electrical activity of interstitial cells of Cajal isolated from canine proximal colon. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7280–7284. doi: 10.1073/pnas.86.18.7280. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee H. K., Sanders K. M. Comparison of ionic currents from interstitial cells and smooth muscle cells of canine colon. J Physiol. 1993 Jan;460:135–152. doi: 10.1113/jphysiol.1993.sp019463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu L. W., Thuneberg L., Huizinga J. D. Selective lesioning of interstitial cells of Cajal by methylene blue and light leads to loss of slow waves. Am J Physiol. 1994 Mar;266(3 Pt 1):G485–G496. doi: 10.1152/ajpgi.1994.266.3.G485. [DOI] [PubMed] [Google Scholar]
- Maeda H., Yamagata A., Nishikawa S., Yoshinaga K., Kobayashi S., Nishi K., Nishikawa S. Requirement of c-kit for development of intestinal pacemaker system. Development. 1992 Oct;116(2):369–375. doi: 10.1242/dev.116.2.369. [DOI] [PubMed] [Google Scholar]
- Publicover N. G., Hammond E. M., Sanders K. M. Amplification of nitric oxide signaling by interstitial cells isolated from canine colon. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):2087–2091. doi: 10.1073/pnas.90.5.2087. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Publicover N. G., Horowitz N. N., Sanders K. M. Calcium oscillations in freshly dispersed and cultured interstitial cells from canine colon. Am J Physiol. 1992 Mar;262(3 Pt 1):C589–C597. doi: 10.1152/ajpcell.1992.262.3.C589. [DOI] [PubMed] [Google Scholar]
- Sanders K. M. A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology. 1996 Aug;111(2):492–515. doi: 10.1053/gast.1996.v111.pm8690216. [DOI] [PubMed] [Google Scholar]
- Shuttleworth C. W., Xue C., Ward S. M., de Vente J., Sanders K. M. Immunohistochemical localization of 3',5'-cyclic guanosine monophosphate in the canine proximal colon: responses to nitric oxide and electrical stimulation of enteric inhibitory neurons. Neuroscience. 1993 Sep;56(2):513–522. doi: 10.1016/0306-4522(93)90350-o. [DOI] [PubMed] [Google Scholar]
- Smith T. K., Reed J. B., Sanders K. M. Electrical pacemakers of canine proximal colon are functionally innervated by inhibitory motor neurons. Am J Physiol. 1989 Mar;256(3 Pt 1):C466–C477. doi: 10.1152/ajpcell.1989.256.3.C466. [DOI] [PubMed] [Google Scholar]
- Smith T. K., Reed J. B., Sanders K. M. Origin and propagation of electrical slow waves in circular muscle of canine proximal colon. Am J Physiol. 1987 Feb;252(2 Pt 1):C215–C224. doi: 10.1152/ajpcell.1987.252.2.C215. [DOI] [PubMed] [Google Scholar]
- Suzuki N., Prosser C. L., Dahms V. Boundary cells between longitudinal and circular layers: essential for electrical slow waves in cat intestine. Am J Physiol. 1986 Mar;250(3 Pt 1):G287–G294. doi: 10.1152/ajpgi.1986.250.3.G287. [DOI] [PubMed] [Google Scholar]
- Torihashi S., Ward S. M., Nishikawa S., Nishi K., Kobayashi S., Sanders K. M. c-kit-dependent development of interstitial cells and electrical activity in the murine gastrointestinal tract. Cell Tissue Res. 1995 Apr;280(1):97–111. doi: 10.1007/BF00304515. [DOI] [PubMed] [Google Scholar]
- Torihashi S., Ward S. M., Sanders K. M. Development of c-Kit-positive cells and the onset of electrical rhythmicity in murine small intestine. Gastroenterology. 1997 Jan;112(1):144–155. doi: 10.1016/s0016-5085(97)70229-4. [DOI] [PubMed] [Google Scholar]
- Wang X. Y., Sanders K. M., Ward S. M. Intimate relationship between interstitial cells of cajal and enteric nerves in the guinea-pig small intestine. Cell Tissue Res. 1999 Feb;295(2):247–256. doi: 10.1007/s004410051231. [DOI] [PubMed] [Google Scholar]
- Ward S. M., Burke E. P., Sanders K. M. Use of rhodamine 123 to label and lesion interstitial cells of Cajal in canine colonic circular muscle. Anat Embryol (Berl) 1990;182(3):215–224. doi: 10.1007/BF00185515. [DOI] [PubMed] [Google Scholar]
- Ward S. M., Burns A. J., Torihashi S., Harney S. C., Sanders K. M. Impaired development of interstitial cells and intestinal electrical rhythmicity in steel mutants. Am J Physiol. 1995 Dec;269(6 Pt 1):C1577–C1585. doi: 10.1152/ajpcell.1995.269.6.C1577. [DOI] [PubMed] [Google Scholar]
- Ward S. M., Burns A. J., Torihashi S., Sanders K. M. Mutation of the proto-oncogene c-kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J Physiol. 1994 Oct 1;480(Pt 1):91–97. doi: 10.1113/jphysiol.1994.sp020343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ward S. M., Harney S. C., Bayguinov J. R., McLaren G. J., Sanders K. M. Development of electrical rhythmicity in the murine gastrointestinal tract is specifically encoded in the tunica muscularis. J Physiol. 1997 Nov 15;505(Pt 1):241–258. doi: 10.1111/j.1469-7793.1997.241bc.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Young H. M., McConalogue K., Furness J. B., De Vente J. Nitric oxide targets in the guinea-pig intestine identified by induction of cyclic GMP immunoreactivity. Neuroscience. 1993 Jul;55(2):583–596. doi: 10.1016/0306-4522(93)90526-l. [DOI] [PubMed] [Google Scholar]
- de Vente J., Schipper J., Steinbusch H. W. Formaldehyde fixation of cGMP in distinct cellular pools and their recognition by different cGMP-antisera. An immunocytochemical study into the problem of serum specificity. Histochemistry. 1989;91(5):401–412. doi: 10.1007/BF00493827. [DOI] [PubMed] [Google Scholar]



