Skip to main content
Annals of the Rheumatic Diseases logoLink to Annals of the Rheumatic Diseases
. 2005 Nov;64(Suppl 4):iv96–iv103. doi: 10.1136/ard.2005.044347

The coming of age of galectins as immunomodulatory agents: impact of these carbohydrate binding proteins in T cell physiology and chronic inflammatory disorders

J Ilarregui, G Bianco, M Toscano, G Rabinovich
PMCID: PMC1766901  PMID: 16239398

Abstract

Immune cell homoeostasis is attributed to multiple distinct safety valves that are interconnected and intervene at defined checkpoints of the life cycle of immunocytes to guarantee clonal expansion and functional inactivation of self-reactive potentially autoaggressive lymphocytes. Galectins, animal lectins defined by shared consensus amino acid sequence and affinity for ß-galactose containing oligosaccharides, are found on various cells of the immune system, and their expression is associated with the differentiation and activation status of these cells. Over the past few years, galectins have been implicated in the regulation of many aspects of T cell physiology such as cell activation, differentiation, and apoptosis. In addition, a growing body of experimental evidence indicates that galectins may play critical roles in the modulation of chronic inflammatory disorders, autoimmunity, and cancer. Given the increased interest of immunologists in this field, the growing body of information raised during the past few years and the potential use of galectins as novel anti-inflammatory agents or targets for immunosuppressive drugs, we will summarise recent advances on the role of galectins in different aspects of T cell physiology and their impact in the development and/or resolution of chronic inflammatory disorders, autoimmunity, and cancer.

Full Text

The Full Text of this article is available as a PDF (191.3 KB).

Figure 1.

Figure 1

 Influence of galectins (Gal) in the regulation of T cell physiology. This scheme illustrates the influence of different members of the galectin family on different T cell functions including T cell apoptosis, activation, adhesion, and cytokine secretion. ECM, extracellular matrix.

Figure 2.

Figure 2

 Galectins in immunopathology. Potential effects of galectin-1 (Gal-1) and galectin-3 (Gal-3) in the context of inflamed synovial tissue in rheumatoid arthritis. IFN, interferon; IL, interleukin; TNF, tumour necrosis factor.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acosta-Rodríguez Eva V., Montes Carolina L., Motrán Claudia C., Zuniga Elina I., Liu Fu-Tong, Rabinovich Gabriel A., Gruppi Adriana. Galectin-3 mediates IL-4-induced survival and differentiation of B cells: functional cross-talk and implications during Trypanosoma cruzi infection. J Immunol. 2004 Jan 1;172(1):493–502. doi: 10.4049/jimmunol.172.1.493. [DOI] [PubMed] [Google Scholar]
  2. Adorini L. Selective immunointervention in autoimmune diseases: lessons from multiple sclerosis. J Chemother. 2001 Jun;13(3):219–234. doi: 10.1179/joc.2001.13.3.219. [DOI] [PubMed] [Google Scholar]
  3. Akahani S., Nangia-Makker P., Inohara H., Kim H. R., Raz A. Galectin-3: a novel antiapoptotic molecule with a functional BH1 (NWGR) domain of Bcl-2 family. Cancer Res. 1997 Dec 1;57(23):5272–5276. [PubMed] [Google Scholar]
  4. Almkvist Jenny, Dahlgren Claes, Leffler Hakon, Karlsson Anna. Activation of the neutrophil nicotinamide adenine dinucleotide phosphate oxidase by galectin-1. J Immunol. 2002 Apr 15;168(8):4034–4041. doi: 10.4049/jimmunol.168.8.4034. [DOI] [PubMed] [Google Scholar]
  5. Amano Maho, Galvan Marisa, He Jiale, Baum Linda G. The ST6Gal I sialyltransferase selectively modifies N-glycans on CD45 to negatively regulate galectin-1-induced CD45 clustering, phosphatase modulation, and T cell death. J Biol Chem. 2002 Dec 23;278(9):7469–7475. doi: 10.1074/jbc.M209595200. [DOI] [PubMed] [Google Scholar]
  6. Arbel-Goren Rinat, Levy Yifat, Ronen Denise, Zick Yehiel. Cyclin-dependent kinase inhibitors and JNK act as molecular switches, regulating the choice between growth arrest and apoptosis induced by galectin-8. J Biol Chem. 2005 Mar 7;280(19):19105–19114. doi: 10.1074/jbc.M502060200. [DOI] [PubMed] [Google Scholar]
  7. Baum Linda G., Blackall Douglas P., Arias-Magallano Sarah, Nanigian Danielle, Uh Soo Y., Browne Jordan M., Hoffmann Douglas, Emmanouilides Christos E., Territo Mary C., Baldwin Gayle Cocita. Amelioration of graft versus host disease by galectin-1. Clin Immunol. 2003 Dec;109(3):295–307. doi: 10.1016/j.clim.2003.08.003. [DOI] [PubMed] [Google Scholar]
  8. Blaser C., Kaufmann M., Müller C., Zimmermann C., Wells V., Mallucci L., Pircher H. Beta-galactoside-binding protein secreted by activated T cells inhibits antigen-induced proliferation of T cells. Eur J Immunol. 1998 Aug;28(8):2311–2319. doi: 10.1002/(SICI)1521-4141(199808)28:08<2311::AID-IMMU2311>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
  9. Breedveld F. Multiple faces of rheumatoid arthritis: diagnostic and therapeutic algorithms. Autoimmun Rev. 2004 Jun;3 (Suppl 1):S22–S22. [PubMed] [Google Scholar]
  10. Chung C. D., Patel V. P., Moran M., Lewis L. A., Miceli M. C. Galectin-1 induces partial TCR zeta-chain phosphorylation and antagonizes processive TCR signal transduction. J Immunol. 2000 Oct 1;165(7):3722–3729. doi: 10.4049/jimmunol.165.7.3722. [DOI] [PubMed] [Google Scholar]
  11. Colnot C., Ripoche M. A., Milon G., Montagutelli X., Crocker P. R., Poirier F. Maintenance of granulocyte numbers during acute peritonitis is defective in galectin-3-null mutant mice. Immunology. 1998 Jul;94(3):290–296. doi: 10.1046/j.1365-2567.1998.00517.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cooper Douglas N. W. Galectinomics: finding themes in complexity. Biochim Biophys Acta. 2002 Sep 19;1572(2-3):209–231. doi: 10.1016/s0304-4165(02)00310-0. [DOI] [PubMed] [Google Scholar]
  13. Correa Silvia G., Sotomayor Claudia E., Aoki Maria P., Maldonado Cristina A., Rabinovich Gabriel A. Opposite effects of galectin-1 on alternative metabolic pathways of L-arginine in resident, inflammatory, and activated macrophages. Glycobiology. 2002 Nov 1;13(2):119–128. doi: 10.1093/glycob/cwg010. [DOI] [PubMed] [Google Scholar]
  14. Cortegano I., del Pozo V., Cárdaba B., de Andrés B., Gallardo S., del Amo A., Arrieta I., Jurado A., Palomino P., Liu F. T. Galectin-3 down-regulates IL-5 gene expression on different cell types. J Immunol. 1998 Jul 1;161(1):385–389. [PubMed] [Google Scholar]
  15. Danguy André, Camby Isabelle, Kiss Robert. Galectins and cancer. Biochim Biophys Acta. 2002 Sep 19;1572(2-3):285–293. doi: 10.1016/s0304-4165(02)00315-x. [DOI] [PubMed] [Google Scholar]
  16. Demetriou M., Granovsky M., Quaggin S., Dennis J. W. Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature. 2001 Feb 8;409(6821):733–739. doi: 10.1038/35055582. [DOI] [PubMed] [Google Scholar]
  17. Dias-Baruffi Marcelo, Zhu Hui, Cho Moonjae, Karmakar Sougata, McEver Rodger P., Cummings Richard D. Dimeric galectin-1 induces surface exposure of phosphatidylserine and phagocytic recognition of leukocytes without inducing apoptosis. J Biol Chem. 2003 Jul 9;278(42):41282–41293. doi: 10.1074/jbc.M306624200. [DOI] [PubMed] [Google Scholar]
  18. Dube Danielle H., Bertozzi Carolyn R. Glycans in cancer and inflammation--potential for therapeutics and diagnostics. Nat Rev Drug Discov. 2005 Jun;4(6):477–488. doi: 10.1038/nrd1751. [DOI] [PubMed] [Google Scholar]
  19. Endharti Agustina Tri, Zhou Yan Wen, Nakashima Izumi, Suzuki Haruhiko. Galectin-1 supports survival of naive T cells without promoting cell proliferation. Eur J Immunol. 2005 Jan;35(1):86–97. doi: 10.1002/eji.200425340. [DOI] [PubMed] [Google Scholar]
  20. Feldmann Marc, Steinman Lawrence. Design of effective immunotherapy for human autoimmunity. Nature. 2005 Jun 2;435(7042):612–619. doi: 10.1038/nature03727. [DOI] [PubMed] [Google Scholar]
  21. Fernández Gabriela C., Ilarregui Juan M., Rubel Carolina J., Toscano Marta A., Gómez Sonia A., Beigier Bompadre Macarena, Isturiz Martín A., Rabinovich Gabriel A., Palermo Marina S. Galectin-3 and soluble fibrinogen act in concert to modulate neutrophil activation and survival: involvement of alternative MAPK pathways. Glycobiology. 2004 Dec 15;15(5):519–527. doi: 10.1093/glycob/cwi026. [DOI] [PubMed] [Google Scholar]
  22. Fred Brewer C. Binding and cross-linking properties of galectins. Biochim Biophys Acta. 2002 Sep 19;1572(2-3):255–262. doi: 10.1016/s0304-4165(02)00312-4. [DOI] [PubMed] [Google Scholar]
  23. Fuertes Mercedes B., Molinero Luciana L., Toscano Marta A., Ilarregui Juan M., Rubinstein Natalia, Fainboim Leonardo, Zwirner Norberto W., Rabinovich Gabriel A. Regulated expression of galectin-1 during T-cell activation involves Lck and Fyn kinases and signaling through MEK1/ERK, p38 MAP kinase and p70S6 kinase. Mol Cell Biochem. 2004 Dec;267(1-2):177–185. doi: 10.1023/b:mcbi.0000049376.50242.7f. [DOI] [PubMed] [Google Scholar]
  24. Fukumori Tomoharu, Takenaka Yukinori, Oka Natsuo, Yoshii Tadashi, Hogan Victor, Inohara Hidenori, Kanayama Hiro-Omi, Kim Hyeong-Reh Choi, Raz Avraham. Endogenous galectin-3 determines the routing of CD95 apoptotic signaling pathways. Cancer Res. 2004 May 15;64(10):3376–3379. doi: 10.1158/0008-5472.CAN-04-0336. [DOI] [PubMed] [Google Scholar]
  25. Fukumori Tomoharu, Takenaka Yukinori, Yoshii Tadashi, Kim Hyeong-Reh Choi, Hogan Victor, Inohara Hidenori, Kagawa Susumu, Raz Avraham. CD29 and CD7 mediate galectin-3-induced type II T-cell apoptosis. Cancer Res. 2003 Dec 1;63(23):8302–8311. [PubMed] [Google Scholar]
  26. Galvan M., Tsuboi S., Fukuda M., Baum L. G. Expression of a specific glycosyltransferase enzyme regulates T cell death mediated by galectin-1. J Biol Chem. 2000 Jun 2;275(22):16730–16737. doi: 10.1074/jbc.M001117200. [DOI] [PubMed] [Google Scholar]
  27. Gordon John N., Di Sabatino Antonio, Macdonald Thomas T. The pathophysiologic rationale for biological therapies in inflammatory bowel disease. Curr Opin Gastroenterol. 2005 Jul;21(4):431–437. [PubMed] [Google Scholar]
  28. Hahn H. P., Pang M., He J., Hernandez J. D., Yang R-Y, Li L. Y., Wang X., Liu F-T, Baum L. G. Galectin-1 induces nuclear translocation of endonuclease G in caspase- and cytochrome c-independent T cell death. Cell Death Differ. 2004 Dec;11(12):1277–1286. doi: 10.1038/sj.cdd.4401485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Harjacek M., Diaz-Cano S., De Miguel M., Wolfe H., Maldonado C. A., Rabinovich G. A. Expression of galectins-1 and -3 correlates with defective mononuclear cell apoptosis in patients with juvenile idiopathic arthritis. J Rheumatol. 2001 Aug;28(8):1914–1922. [PubMed] [Google Scholar]
  30. He Jiale, Baum Linda G. Presentation of galectin-1 by extracellular matrix triggers T cell death. J Biol Chem. 2003 Nov 14;279(6):4705–4712. doi: 10.1074/jbc.M311183200. [DOI] [PubMed] [Google Scholar]
  31. Hokama Akira, Mizoguchi Emiko, Sugimoto Ken, Shimomura Yasuyo, Tanaka Yosuke, Yoshida Masaru, Rietdijk Svend T., de Jong Ype P., Snapper Scott B., Terhorst Cox. Induced reactivity of intestinal CD4(+) T cells with an epithelial cell lectin, galectin-4, contributes to exacerbation of intestinal inflammation. Immunity. 2004 Jun;20(6):681–693. doi: 10.1016/j.immuni.2004.05.009. [DOI] [PubMed] [Google Scholar]
  32. Hotta K., Funahashi T., Matsukawa Y., Takahashi M., Nishizawa H., Kishida K., Matsuda M., Kuriyama H., Kihara S., Nakamura T. Galectin-12, an Adipose-expressed Galectin-like Molecule Possessing Apoptosis-inducing Activity. J Biol Chem. 2001 Jul 2;276(36):34089–34097. doi: 10.1074/jbc.M105097200. [DOI] [PubMed] [Google Scholar]
  33. Hoyer Katrina K., Pang Mabel, Gui Dorina, Shintaku I. Peter, Kuwabara Ichiro, Liu Fu-Tong, Said Jonathan W., Baum Linda G., Teitell Michael A. An anti-apoptotic role for galectin-3 in diffuse large B-cell lymphomas. Am J Pathol. 2004 Mar;164(3):893–902. doi: 10.1016/S0002-9440(10)63177-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Hsu D. K., Yang R. Y., Pan Z., Yu L., Salomon D. R., Fung-Leung W. P., Liu F. T. Targeted disruption of the galectin-3 gene results in attenuated peritoneal inflammatory responses. Am J Pathol. 2000 Mar;156(3):1073–1083. doi: 10.1016/S0002-9440(10)64975-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ion G., Fajka-Boja R., Tóth G. K., Caron M., Monostori E. Role of p56lck and ZAP70-mediated tyrosine phosphorylation in galectin-1-induced cell death. Cell Death Differ. 2005 Aug;12(8):1145–1147. doi: 10.1038/sj.cdd.4401628. [DOI] [PubMed] [Google Scholar]
  36. Iwasaki Tsuyoshi. Recent advances in the treatment of graft-versus-host disease. Clin Med Res. 2004 Nov;2(4):243–252. doi: 10.3121/cmr.2.4.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Karlsson A., Follin P., Leffler H., Dahlgren C. Galectin-3 activates the NADPH-oxidase in exudated but not peripheral blood neutrophils. Blood. 1998 May 1;91(9):3430–3438. [PubMed] [Google Scholar]
  38. Kashio Yumiko, Nakamura Kazuhiro, Abedin Mohammad J., Seki Masako, Nishi Nozomu, Yoshida Naoko, Nakamura Takanori, Hirashima Mitsuomi. Galectin-9 induces apoptosis through the calcium-calpain-caspase-1 pathway. J Immunol. 2003 Apr 1;170(7):3631–3636. doi: 10.4049/jimmunol.170.7.3631. [DOI] [PubMed] [Google Scholar]
  39. Kuwabara I., Liu F. T. Galectin-3 promotes adhesion of human neutrophils to laminin. J Immunol. 1996 May 15;156(10):3939–3944. [PubMed] [Google Scholar]
  40. Kuwabara Ichiro, Kuwabara Yasuko, Yang Ri-Yao, Schuler Martin, Green Douglas R., Zuraw Bruce L., Hsu Daniel K., Liu Fu-Tong. Galectin-7 (PIG1) exhibits pro-apoptotic function through JNK activation and mitochondrial cytochrome c release. J Biol Chem. 2001 Nov 8;277(5):3487–3497. doi: 10.1074/jbc.M109360200. [DOI] [PubMed] [Google Scholar]
  41. La Mylinh, Cao Thong V., Cerchiaro Graziela, Chilton Kathya, Hirabayashi Jun, Kasai Ken-Ichi, Oliani Sonia M., Chernajovsky Yuti, Perretti Mauro. A novel biological activity for galectin-1: inhibition of leukocyte-endothelial cell interactions in experimental inflammation. Am J Pathol. 2003 Oct;163(4):1505–1515. doi: 10.1016/s0002-9440(10)63507-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Lantéri Marion, Giordanengo Valérie, Hiraoka Nobuyoshi, Fuzibet Jean-Gabriel, Auberger Patrick, Fukuda Minoru, Baum Linda G., Lefebvre Jean-Claude. Altered T cell surface glycosylation in HIV-1 infection results in increased susceptibility to galectin-1-induced cell death. Glycobiology. 2003 Aug 18;13(12):909–918. doi: 10.1093/glycob/cwg110. [DOI] [PubMed] [Google Scholar]
  43. Leffler Hakon, Carlsson Susanne, Hedlund Maria, Qian Yuning, Poirier Francoise. Introduction to galectins. Glycoconj J. 2004;19(7-9):433–440. doi: 10.1023/B:GLYC.0000014072.34840.04. [DOI] [PubMed] [Google Scholar]
  44. Lenardo M. J. The molecular regulation of lymphocyte apoptosis. Semin Immunol. 1997 Feb;9(1):1–5. doi: 10.1006/smim.1996.0050. [DOI] [PubMed] [Google Scholar]
  45. Levi G., Tarrab-Hazdai R., Teichberg V. I. Prevention and therapy with electrolectin of experimental autoimmune myasthenia gravis in rabbits. Eur J Immunol. 1983 Jun;13(6):500–507. doi: 10.1002/eji.1830130613. [DOI] [PubMed] [Google Scholar]
  46. Levroney Ernest L., Aguilar Hector C., Fulcher Jennifer A., Kohatsu Luciana, Pace Karen E., Pang Mabel, Gurney Kevin B., Baum Linda G., Lee Benhur. Novel innate immune functions for galectin-1: galectin-1 inhibits cell fusion by Nipah virus envelope glycoproteins and augments dendritic cell secretion of proinflammatory cytokines. J Immunol. 2005 Jul 1;175(1):413–420. doi: 10.4049/jimmunol.175.1.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Liu Fu-Tong, Patterson Ronald J., Wang John L. Intracellular functions of galectins. Biochim Biophys Acta. 2002 Sep 19;1572(2-3):263–273. doi: 10.1016/s0304-4165(02)00313-6. [DOI] [PubMed] [Google Scholar]
  48. Liu Fu-Tong, Rabinovich Gabriel A. Galectins as modulators of tumour progression. Nat Rev Cancer. 2005 Jan;5(1):29–41. doi: 10.1038/nrc1527. [DOI] [PubMed] [Google Scholar]
  49. Liu Fu-Tong. Regulatory roles of galectins in the immune response. Int Arch Allergy Immunol. 2005 Apr;136(4):385–400. doi: 10.1159/000084545. [DOI] [PubMed] [Google Scholar]
  50. Matarrese Paola, Tinari Antonella, Mormone Elisabetta, Bianco Germán A., Toscano Marta A., Ascione Barbara, Rabinovich Gabriel A., Malorni Walter. Galectin-1 sensitizes resting human T lymphocytes to Fas (CD95)-mediated cell death via mitochondrial hyperpolarization, budding, and fission. J Biol Chem. 2004 Nov 19;280(8):6969–6985. doi: 10.1074/jbc.M409752200. [DOI] [PubMed] [Google Scholar]
  51. Matsumoto Ryoji, Hirashima Mitsuomi, Kita Hirohito, Gleich Gerald J. Biological activities of ecalectin: a novel eosinophil-activating factor. J Immunol. 2002 Feb 15;168(4):1961–1967. doi: 10.4049/jimmunol.168.4.1961. [DOI] [PubMed] [Google Scholar]
  52. Nakahara S., Oka N., Raz A. On the role of galectin-3 in cancer apoptosis. Apoptosis. 2005 Mar;10(2):267–275. doi: 10.1007/s10495-005-0801-y. [DOI] [PubMed] [Google Scholar]
  53. Nishi Nozomu, Shoji Hiroki, Seki Masako, Itoh Aiko, Miyanaka Hiroshi, Yuube Kouichi, Hirashima Mitsuomi, Nakamura Takanori. Galectin-8 modulates neutrophil function via interaction with integrin alphaM. Glycobiology. 2003 Jul 24;13(11):755–763. doi: 10.1093/glycob/cwg102. [DOI] [PubMed] [Google Scholar]
  54. Offner H., Celnik B., Bringman T. S., Casentini-Borocz D., Nedwin G. E., Vandenbark A. A. Recombinant human beta-galactoside binding lectin suppresses clinical and histological signs of experimental autoimmune encephalomyelitis. J Neuroimmunol. 1990 Jul;28(2):177–184. doi: 10.1016/0165-5728(90)90032-i. [DOI] [PubMed] [Google Scholar]
  55. Ohshima Shiro, Kuchen Stefan, Seemayer Christian A., Kyburz Diego, Hirt Astrid, Klinzing Stephanie, Michel Beat A., Gay Renate E., Liu Fu-Tong, Gay Steffen. Galectin 3 and its binding protein in rheumatoid arthritis. Arthritis Rheum. 2003 Oct;48(10):2788–2795. doi: 10.1002/art.11287. [DOI] [PubMed] [Google Scholar]
  56. Ozaki Kouichi, Inoue Katsumi, Sato Hiroshi, Iida Aritoshi, Ohnishi Yozo, Sekine Akihiro, Sato Hideyuki, Odashiro Keita, Nobuyoshi Masakiyo, Hori Masatsugu. Functional variation in LGALS2 confers risk of myocardial infarction and regulates lymphotoxin-alpha secretion in vitro. Nature. 2004 May 6;429(6987):72–75. doi: 10.1038/nature02502. [DOI] [PubMed] [Google Scholar]
  57. Pace K. E., Hahn H. P., Pang M., Nguyen J. T., Baum L. G. CD7 delivers a pro-apoptotic signal during galectin-1-induced T cell death. J Immunol. 2000 Sep 1;165(5):2331–2334. doi: 10.4049/jimmunol.165.5.2331. [DOI] [PubMed] [Google Scholar]
  58. Pace K. E., Lee C., Stewart P. L., Baum L. G. Restricted receptor segregation into membrane microdomains occurs on human T cells during apoptosis induced by galectin-1. J Immunol. 1999 Oct 1;163(7):3801–3811. [PubMed] [Google Scholar]
  59. Perillo N. L., Pace K. E., Seilhamer J. J., Baum L. G. Apoptosis of T cells mediated by galectin-1. Nature. 1995 Dec 14;378(6558):736–739. doi: 10.1038/378736a0. [DOI] [PubMed] [Google Scholar]
  60. Perillo N. L., Uittenbogaart C. H., Nguyen J. T., Baum L. G. Galectin-1, an endogenous lectin produced by thymic epithelial cells, induces apoptosis of human thymocytes. J Exp Med. 1997 May 19;185(10):1851–1858. doi: 10.1084/jem.185.10.1851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Rabinovich G. A., Alonso C. R., Sotomayor C. E., Durand S., Bocco J. L., Riera C. M. Molecular mechanisms implicated in galectin-1-induced apoptosis: activation of the AP-1 transcription factor and downregulation of Bcl-2. Cell Death Differ. 2000 Aug;7(8):747–753. doi: 10.1038/sj.cdd.4400708. [DOI] [PubMed] [Google Scholar]
  62. Rabinovich G. A., Ariel A., Hershkoviz R., Hirabayashi J., Kasai K. I., Lider O. Specific inhibition of T-cell adhesion to extracellular matrix and proinflammatory cytokine secretion by human recombinant galectin-1. Immunology. 1999 May;97(1):100–106. doi: 10.1046/j.1365-2567.1999.00746.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Rabinovich G. A., Daly G., Dreja H., Tailor H., Riera C. M., Hirabayashi J., Chernajovsky Y. Recombinant galectin-1 and its genetic delivery suppress collagen-induced arthritis via T cell apoptosis. J Exp Med. 1999 Aug 2;190(3):385–398. doi: 10.1084/jem.190.3.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Rabinovich G. A., Iglesias M. M., Modesti N. M., Castagna L. F., Wolfenstein-Todel C., Riera C. M., Sotomayor C. E. Activated rat macrophages produce a galectin-1-like protein that induces apoptosis of T cells: biochemical and functional characterization. J Immunol. 1998 May 15;160(10):4831–4840. [PubMed] [Google Scholar]
  65. Rabinovich G. A., Modesti N. M., Castagna L. F., Landa C. A., Riera C. M., Sotomayor C. E. Specific inhibition of lymphocyte proliferation and induction of apoptosis by CLL-I, a beta-galactoside-binding lectin. J Biochem. 1997 Aug;122(2):365–373. doi: 10.1093/oxfordjournals.jbchem.a021762. [DOI] [PubMed] [Google Scholar]
  66. Rabinovich G. A., Ramhorst R. E., Rubinstein N., Corigliano A., Daroqui M. C., Kier-Joffé E. B., Fainboim L. Induction of allogenic T-cell hyporesponsiveness by galectin-1-mediated apoptotic and non-apoptotic mechanisms. Cell Death Differ. 2002 Jun;9(6):661–670. doi: 10.1038/sj.cdd.4401009. [DOI] [PubMed] [Google Scholar]
  67. Rabinovich G. A., Sotomayor C. E., Riera C. M., Bianco I., Correa S. G. Evidence of a role for galectin-1 in acute inflammation. Eur J Immunol. 2000 May;30(5):1331–1339. doi: 10.1002/(SICI)1521-4141(200005)30:5<1331::AID-IMMU1331>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  68. Rabinovich Gabriel A., Baum Linda G., Tinari Nicola, Paganelli Roberto, Natoli Clara, Liu Fu Tong, Iacobelli Stefano. Galectins and their ligands: amplifiers, silencers or tuners of the inflammatory response? Trends Immunol. 2002 Jun;23(6):313–320. doi: 10.1016/s1471-4906(02)02232-9. [DOI] [PubMed] [Google Scholar]
  69. Rabinovich Gabriel A., Rubinstein Natalia, Toscano Marta A. Role of galectins in inflammatory and immunomodulatory processes. Biochim Biophys Acta. 2002 Sep 19;1572(2-3):274–284. doi: 10.1016/s0304-4165(02)00314-8. [DOI] [PubMed] [Google Scholar]
  70. Rabinovich Gabriel A., Toscano Marta A., Ilarregui Juan M., Rubinstein Natalia. Shedding light on the immunomodulatory properties of galectins: novel regulators of innate and adaptive immune responses. Glycoconj J. 2004;19(7-9):565–573. doi: 10.1023/B:GLYC.0000014087.41914.72. [DOI] [PubMed] [Google Scholar]
  71. Rappl G., Abken H., Muche J. M., Sterry W., Tilgen W., André S., Kaltner H., Ugurel S., Gabius H-J, Reinhold U. CD4+CD7- leukemic T cells from patients with Sézary syndrome are protected from galectin-1-triggered T cell death. Leukemia. 2002 May;16(5):840–845. doi: 10.1038/sj.leu.2402438. [DOI] [PubMed] [Google Scholar]
  72. Roberts Alice A., Amano Maho, Felten Christopher, Galvan Marisa, Sulur Giri, Pinter-Brown Lauren, Dobbeling Udo, Burg Gunter, Said Jonathan, Baum Linda G. Galectin-1-mediated apoptosis in mycosis fungoides: the roles of CD7 and cell surface glycosylation. Mod Pathol. 2003 Jun;16(6):543–551. doi: 10.1097/01.MP.0000071840.84469.06. [DOI] [PubMed] [Google Scholar]
  73. Rubinstein N., Ilarregui J. M., Toscano M. A., Rabinovich G. A. The role of galectins in the initiation, amplification and resolution of the inflammatory response. Tissue Antigens. 2004 Jul;64(1):1–12. doi: 10.1111/j.0001-2815.2004.00278.x. [DOI] [PubMed] [Google Scholar]
  74. Rubinstein Natalia, Alvarez Mariano, Zwirner Norberto W., Toscano Marta A., Ilarregui Juan M., Bravo Alicia, Mordoh José, Fainboim Leonardo, Podhajcer Osvaldo L., Rabinovich Gabriel A. Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection; A potential mechanism of tumor-immune privilege. Cancer Cell. 2004 Mar;5(3):241–251. doi: 10.1016/s1535-6108(04)00024-8. [DOI] [PubMed] [Google Scholar]
  75. Sano H., Hsu D. K., Yu L., Apgar J. R., Kuwabara I., Yamanaka T., Hirashima M., Liu F. T. Human galectin-3 is a novel chemoattractant for monocytes and macrophages. J Immunol. 2000 Aug 15;165(4):2156–2164. doi: 10.4049/jimmunol.165.4.2156. [DOI] [PubMed] [Google Scholar]
  76. Sano Hideki, Hsu Daniel K., Apgar John R., Yu Lan, Sharma Bhavya B., Kuwabara Ichiro, Izui Shozo, Liu Fu-Tong. Critical role of galectin-3 in phagocytosis by macrophages. J Clin Invest. 2003 Aug;112(3):389–397. doi: 10.1172/JCI17592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Santucci L., Fiorucci S., Cammilleri F., Servillo G., Federici B., Morelli A. Galectin-1 exerts immunomodulatory and protective effects on concanavalin A-induced hepatitis in mice. Hepatology. 2000 Feb;31(2):399–406. doi: 10.1002/hep.510310220. [DOI] [PubMed] [Google Scholar]
  78. Santucci Luca, Fiorucci Stefano, Rubinstein Natalia, Mencarelli Andrea, Palazzetti Barbara, Federici Barbara, Rabinovich Gabriel A., Morelli Antonio. Galectin-1 suppresses experimental colitis in mice. Gastroenterology. 2003 May;124(5):1381–1394. doi: 10.1016/s0016-5085(03)00267-1. [DOI] [PubMed] [Google Scholar]
  79. Sato Sachiko, Ouellet Nathalie, Pelletier Isabelle, Simard Marie, Rancourt Ann, Bergeron Michel G. Role of galectin-3 as an adhesion molecule for neutrophil extravasation during streptococcal pneumonia. J Immunol. 2002 Feb 15;168(4):1813–1822. doi: 10.4049/jimmunol.168.4.1813. [DOI] [PubMed] [Google Scholar]
  80. Sturm Andreas, Lensch Martin, André Sabine, Kaltner Herbert, Wiedenmann Bertram, Rosewicz Stefan, Dignass Axel U., Gabius Hans-Joachim. Human galectin-2: novel inducer of T cell apoptosis with distinct profile of caspase activation. J Immunol. 2004 Sep 15;173(6):3825–3837. doi: 10.4049/jimmunol.173.6.3825. [DOI] [PubMed] [Google Scholar]
  81. Tsuchiyama Y., Wada J., Zhang H., Morita Y., Hiragushi K., Hida K., Shikata K., Yamamura M., Kanwar Y. S., Makino H. Efficacy of galectins in the amelioration of nephrotoxic serum nephritis in Wistar Kyoto rats. Kidney Int. 2000 Nov;58(5):1941–1952. doi: 10.1111/j.1523-1755.2000.00366.x. [DOI] [PubMed] [Google Scholar]
  82. Tsutsui H., Adachi K., Seki E., Nakanishi K. Cytokine-induced inflammatory liver injuries. Curr Mol Med. 2003 Sep;3(6):545–559. doi: 10.2174/1566524033479618. [DOI] [PubMed] [Google Scholar]
  83. Vespa G. N., Lewis L. A., Kozak K. R., Moran M., Nguyen J. T., Baum L. G., Miceli M. C. Galectin-1 specifically modulates TCR signals to enhance TCR apoptosis but inhibit IL-2 production and proliferation. J Immunol. 1999 Jan 15;162(2):799–806. [PubMed] [Google Scholar]
  84. Vincent Angela. Unravelling the pathogenesis of myasthenia gravis. Nat Rev Immunol. 2002 Oct;2(10):797–804. doi: 10.1038/nri916. [DOI] [PubMed] [Google Scholar]
  85. Wada J., Ota K., Kumar A., Wallner E. I., Kanwar Y. S. Developmental regulation, expression, and apoptotic potential of galectin-9, a beta-galactoside binding lectin. J Clin Invest. 1997 May 15;99(10):2452–2461. doi: 10.1172/JCI119429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Walzel H., Blach M., Hirabayashi J., Kasai K. I., Brock J. Involvement of CD2 and CD3 in galectin-1 induced signaling in human Jurkat T-cells. Glycobiology. 2000 Feb;10(2):131–140. doi: 10.1093/glycob/10.2.131. [DOI] [PubMed] [Google Scholar]
  87. Walzel Hermann, Blach Matthias, Hirabayashi Jun, Arata Yoichiro, Kasai Ken-ichi, Brock Josef. Galectin-induced activation of the transcription factors NFAT and AP-1 in human Jurkat T-lymphocytes. Cell Signal. 2002 Oct;14(10):861–868. doi: 10.1016/s0898-6568(02)00035-9. [DOI] [PubMed] [Google Scholar]
  88. Yang R. Y., Hsu D. K., Liu F. T. Expression of galectin-3 modulates T-cell growth and apoptosis. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6737–6742. doi: 10.1073/pnas.93.13.6737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Yang R. Y., Hsu D. K., Yu L., Ni J., Liu F. T. Cell cycle regulation by galectin-12, a new member of the galectin superfamily. J Biol Chem. 2001 Mar 30;276(23):20252–20260. doi: 10.1074/jbc.M010914200. [DOI] [PubMed] [Google Scholar]
  90. Zúiga E., Gruppi A., Hirabayashi J., Kasai K. I., Rabinovich G. A. Regulated expression and effect of galectin-1 on Trypanosoma cruzi-infected macrophages: modulation of microbicidal activity and survival. Infect Immun. 2001 Nov;69(11):6804–6812. doi: 10.1128/IAI.69.11.6804-6812.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. van der Leij Judith, van den Berg Anke, Blokzijl Tjasso, Harms Geert, van Goor Harry, Zwiers Peter, van Weeghel Rob, Poppema Sibrand, Visser Lydia. Dimeric galectin-1 induces IL-10 production in T-lymphocytes: an important tool in the regulation of the immune response. J Pathol. 2004 Dec;204(5):511–518. doi: 10.1002/path.1671. [DOI] [PubMed] [Google Scholar]

Articles from Annals of the Rheumatic Diseases are provided here courtesy of BMJ Publishing Group

RESOURCES