Abstract
This paper reviews the existing evidence regarding the use of superagonistic anti-CD28 antibodies (CD28 superagonists) for therapeutic manipulation of regulatory T cells (Treg cells). The molecular properties of superagonistic anti-CD28 antibodies allow the generation of a strong activating signal in mature T cells, including Treg cells, without additional stimulation of the T cell receptor complex. CD28 superagonist administration in vivo leads to the preferential expansion and strong activation of naturally occurring CD4+CD25+CTLA-4+FoxP3+ Treg cells over conventional T cells. In animal models, both prophylactic and therapeutic administration of a CD28 superagonist prevented or at least greatly mitigated clinical symptoms and induced remission. Adoptive transfer experiments have further shown that CD28 superagonists mediate protection by expansion and activation of CD4+CD25+ Treg cells. Therefore, superagonistic anti-CD28 antibodies offer a promising novel treatment option for human autoimmune diseases and the first clinical trials are eagerly awaited.
Full Text
The Full Text of this article is available as a PDF (189.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Acuto Oreste, Michel Frédérique. CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nat Rev Immunol. 2003 Dec;3(12):939–951. doi: 10.1038/nri1248. [DOI] [PubMed] [Google Scholar]
- Apostolou Irina, Sarukhan Adelaida, Klein Ludger, von Boehmer Harald. Origin of regulatory T cells with known specificity for antigen. Nat Immunol. 2002 Jul 1;3(8):756–763. doi: 10.1038/ni816. [DOI] [PubMed] [Google Scholar]
- Barthlott Thomas, Moncrieffe Halima, Veldhoen Marc, Atkins Christopher J., Christensen Jillian, O'Garra Anne, Stockinger Brigitta. CD25+ CD4+ T cells compete with naive CD4+ T cells for IL-2 and exploit it for the induction of IL-10 production. Int Immunol. 2005 Jan 31;17(3):279–288. doi: 10.1093/intimm/dxh207. [DOI] [PubMed] [Google Scholar]
- Ehrenstein Michael R., Evans Jamie G., Singh Animesh, Moore Samantha, Warnes Gary, Isenberg David A., Mauri Claudia. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFalpha therapy. J Exp Med. 2004 Jul 26;200(3):277–285. doi: 10.1084/jem.20040165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans Edward J., Esnouf Robert M., Manso-Sancho Raquel, Gilbert Robert J. C., James John R., Yu Chao, Fennelly Janet A., Vowles Cheryl, Hanke Thomas, Walse Björn. Crystal structure of a soluble CD28-Fab complex. Nat Immunol. 2005 Feb 6;6(3):271–279. doi: 10.1038/ni1170. [DOI] [PubMed] [Google Scholar]
- Fontenot Jason D., Gavin Marc A., Rudensky Alexander Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003 Mar 3;4(4):330–336. doi: 10.1038/ni904. [DOI] [PubMed] [Google Scholar]
- Fontenot Jason D., Rasmussen Jeffrey P., Williams Luke M., Dooley James L., Farr Andrew G., Rudensky Alexander Y. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity. 2005 Mar;22(3):329–341. doi: 10.1016/j.immuni.2005.01.016. [DOI] [PubMed] [Google Scholar]
- Hori Shohei, Nomura Takashi, Sakaguchi Shimon. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003 Jan 9;299(5609):1057–1061. doi: 10.1126/science.1079490. [DOI] [PubMed] [Google Scholar]
- Hsieh Chyi-Song, Liang Yuqiong, Tyznik Aaron J., Self Steven G., Liggitt Denny, Rudensky Alexander Y. Recognition of the peripheral self by naturally arising CD25+ CD4+ T cell receptors. Immunity. 2004 Aug;21(2):267–277. doi: 10.1016/j.immuni.2004.07.009. [DOI] [PubMed] [Google Scholar]
- Jordan M. S., Boesteanu A., Reed A. J., Petrone A. L., Holenbeck A. E., Lerman M. A., Naji A., Caton A. J. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol. 2001 Apr;2(4):301–306. doi: 10.1038/86302. [DOI] [PubMed] [Google Scholar]
- Kerstan Andreas, Hünig Thomas. Cutting edge: distinct TCR- and CD28-derived signals regulate CD95L, Bcl-xL, and the survival of primary T cells. J Immunol. 2004 Feb 1;172(3):1341–1345. doi: 10.4049/jimmunol.172.3.1341. [DOI] [PubMed] [Google Scholar]
- Khattri Roli, Cox Tom, Yasayko Sue-Ann, Ramsdell Fred. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol. 2003 Mar 3;4(4):337–342. doi: 10.1038/ni909. [DOI] [PubMed] [Google Scholar]
- Lafferty K. J., Cunningham A. J. A new analysis of allogeneic interactions. Aust J Exp Biol Med Sci. 1975 Feb;53(1):27–42. doi: 10.1038/icb.1975.3. [DOI] [PubMed] [Google Scholar]
- Lin Chia-Huey, Hünig Thomas. Efficient expansion of regulatory T cells in vitro and in vivo with a CD28 superagonist. Eur J Immunol. 2003 Mar;33(3):626–638. doi: 10.1002/eji.200323570. [DOI] [PubMed] [Google Scholar]
- Lühder Fred, Huang Yun, Dennehy Kevin M., Guntermann Christine, Müller Ingrid, Winkler Erna, Kerkau Thomas, Ikemizu Shinji, Davis Simon J., Hanke Thomas. Topological requirements and signaling properties of T cell-activating, anti-CD28 antibody superagonists. J Exp Med. 2003 Apr 21;197(8):955–966. doi: 10.1084/jem.20021024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malek Thomas R., Bayer Allison L. Tolerance, not immunity, crucially depends on IL-2. Nat Rev Immunol. 2004 Sep;4(9):665–674. doi: 10.1038/nri1435. [DOI] [PubMed] [Google Scholar]
- Rodríguez-Palmero M., Hara T., Thumbs A., Hünig T. Triggering of T cell proliferation through CD28 induces GATA-3 and promotes T helper type 2 differentiation in vitro and in vivo. Eur J Immunol. 1999 Dec;29(12):3914–3924. doi: 10.1002/(SICI)1521-4141(199912)29:12<3914::AID-IMMU3914>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
- Sakaguchi Shimon. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol. 2005 Apr;6(4):345–352. doi: 10.1038/ni1178. [DOI] [PubMed] [Google Scholar]
- Salomon B., Lenschow D. J., Rhee L., Ashourian N., Singh B., Sharpe A., Bluestone J. A. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity. 2000 Apr;12(4):431–440. doi: 10.1016/s1074-7613(00)80195-8. [DOI] [PubMed] [Google Scholar]
- Schmidt Jens, Elflein Karin, Stienekemeier Martina, Rodriguez-Palmero Marta, Schneider Christiane, Toyka Klaus V., Gold Ralf, Hünig Thomas. Treatment and prevention of experimental autoimmune neuritis with superagonistic CD28-specific monoclonal antibodies. J Neuroimmunol. 2003 Jul;140(1-2):143–152. doi: 10.1016/s0165-5728(03)00182-6. [DOI] [PubMed] [Google Scholar]
- Setoguchi Ruka, Hori Shohei, Takahashi Takeshi, Sakaguchi Shimon. Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J Exp Med. 2005 Mar 7;201(5):723–735. doi: 10.1084/jem.20041982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tacke M., Hanke G., Hanke T., Hünig T. CD28-mediated induction of proliferation in resting T cells in vitro and in vivo without engagement of the T cell receptor: evidence for functionally distinct forms of CD28. Eur J Immunol. 1997 Jan;27(1):239–247. doi: 10.1002/eji.1830270136. [DOI] [PubMed] [Google Scholar]
- Tai Xuguang, Cowan Michelle, Feigenbaum Lionel, Singer Alfred. CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Nat Immunol. 2005 Jan 9;6(2):152–162. doi: 10.1038/ni1160. [DOI] [PubMed] [Google Scholar]
- Tang Qizhi, Henriksen Kammi J., Bi Mingying, Finger Erik B., Szot Greg, Ye Jianqin, Masteller Emma L., McDevitt Hugh, Bonyhadi Mark, Bluestone Jeffrey A. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med. 2004 Jun 7;199(11):1455–1465. doi: 10.1084/jem.20040139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tang Qizhi, Henriksen Kammi J., Boden Elisa K., Tooley Aaron J., Ye Jianqin, Subudhi Sumit K., Zheng Xin X., Strom Terry B., Bluestone Jeffrey A. Cutting edge: CD28 controls peripheral homeostasis of CD4+CD25+ regulatory T cells. J Immunol. 2003 Oct 1;171(7):3348–3352. doi: 10.4049/jimmunol.171.7.3348. [DOI] [PubMed] [Google Scholar]
- Tarbell Kristin V., Yamazaki Sayuri, Olson Kara, Toy Priscilla, Steinman Ralph M. CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J Exp Med. 2004 Jun 7;199(11):1467–1477. doi: 10.1084/jem.20040180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thornton A. M., Shevach E. M. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med. 1998 Jul 20;188(2):287–296. doi: 10.1084/jem.188.2.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Viglietta Vissia, Baecher-Allan Clare, Weiner Howard L., Hafler David A. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med. 2004 Apr 5;199(7):971–979. doi: 10.1084/jem.20031579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu Xue-Zhong, Albert Michael H., Martin Paul J., Anasetti Claudio. CD28 ligation induces transplantation tolerance by IFN-gamma-dependent depletion of T cells that recognize alloantigens. J Clin Invest. 2004 Jun;113(11):1624–1630. doi: 10.1172/JCI20940. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de la Rosa Maurus, Rutz Sascha, Dorninger Heike, Scheffold Alexander. Interleukin-2 is essential for CD4+CD25+ regulatory T cell function. Eur J Immunol. 2004 Sep;34(9):2480–2488. doi: 10.1002/eji.200425274. [DOI] [PubMed] [Google Scholar]