Skip to main content
Annals of the Rheumatic Diseases logoLink to Annals of the Rheumatic Diseases
. 2005 Nov;64(Suppl 4):iv24–iv28. doi: 10.1136/ard.2005.042531

Immunological control of tuberculosis: role of tumour necrosis factor and more

S Stenger
PMCID: PMC1766911  PMID: 16239381

Abstract

Therapy of autoimmune diseases with tumour necrosis factor (TNF) neutralising agents has provided a unique opportunity to learn about the significance of TNF in the maintenance of latent bacterial infections in humans. The remarkably high incidence of tuberculosis in patients treated with TNF antagonists raises the intriguing question about the physiological role of TNF in maintaining the lifelong latency of tubercle bacilli in granulomas in infected patients. Basic research during the past decade(s) combined with thoughtful observations in human subjects with tuberculosis and autoimmune diseases has provided several potential explanations for the recurrence of tuberculosis if TNF supply is withdrawn. TNF is involved in at least four key functions that contribute towards beneficial effects on the symptoms of autoimmune disorders on the one hand, and the attenuation of immune responses against Mycobacterium tuberculosis on the other hand. These are outlined in this review: induction of apoptosis, maturation of dendritic cells, activation of antimicrobial activity in macrophages, and orchestration of leucocyte movement.

Full Text

The Full Text of this article is available as a PDF (319.4 KB).

Figure 1.

Figure 1

 Innate immunity in tuberculosis. GM-CSF, granulocyte macrophage-colony stimulating factor; IL, interleukin; MCP, monocyte chemotactic protein; MIP, macrophage inflammatory protein; RANTES, Regulated on Activation, Normal T Expressed and Secreted; TGF, transforming growth factor; Th, T helper; TNF, tumour necrosis factor.

Figure 2.

Figure 2

 Initiation of adaptive immunity. IFN, interferon; MHC, major histocompatibility complex; TCR, T cell receptor; TNF, tumour necrosis factor.

Figure 3.

Figure 3

 Key functions of tumour necrosis factor (TNF) in tuberculosis. DC, dendritic cell, IFN, interferon.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams L. B., Mason C. M., Kolls J. K., Scollard D., Krahenbuhl J. L., Nelson S. Exacerbation of acute and chronic murine tuberculosis by administration of a tumor necrosis factor receptor-expressing adenovirus. J Infect Dis. 1995 Feb;171(2):400–405. doi: 10.1093/infdis/171.2.400. [DOI] [PubMed] [Google Scholar]
  2. Algood Holly M. Scott, Flynn JoAnne L. CCR5-deficient mice control Mycobacterium tuberculosis infection despite increased pulmonary lymphocytic infiltration. J Immunol. 2004 Sep 1;173(5):3287–3296. doi: 10.4049/jimmunol.173.5.3287. [DOI] [PubMed] [Google Scholar]
  3. Balcewicz-Sablinska M. K., Keane J., Kornfeld H., Remold H. G. Pathogenic Mycobacterium tuberculosis evades apoptosis of host macrophages by release of TNF-R2, resulting in inactivation of TNF-alpha. J Immunol. 1998 Sep 1;161(5):2636–2641. [PubMed] [Google Scholar]
  4. Banchereau J., Briere F., Caux C., Davoust J., Lebecque S., Liu Y. J., Pulendran B., Palucka K. Immunobiology of dendritic cells. Annu Rev Immunol. 2000;18:767–811. doi: 10.1146/annurev.immunol.18.1.767. [DOI] [PubMed] [Google Scholar]
  5. Bean A. G., Roach D. R., Briscoe H., France M. P., Korner H., Sedgwick J. D., Britton W. J. Structural deficiencies in granuloma formation in TNF gene-targeted mice underlie the heightened susceptibility to aerosol Mycobacterium tuberculosis infection, which is not compensated for by lymphotoxin. J Immunol. 1999 Mar 15;162(6):3504–3511. [PubMed] [Google Scholar]
  6. Bilyk N., Holt P. G. Cytokine modulation of the immunosuppressive phenotype of pulmonary alveolar macrophage populations. Immunology. 1995 Oct;86(2):231–237. [PMC free article] [PubMed] [Google Scholar]
  7. Botha Tania, Ryffel Bernhard. Reactivation of latent tuberculosis infection in TNF-deficient mice. J Immunol. 2003 Sep 15;171(6):3110–3118. doi: 10.4049/jimmunol.171.6.3110. [DOI] [PubMed] [Google Scholar]
  8. Buettner Maike, Meinken Christoph, Bastian Max, Bhat Rauf, Stössel Elmar, Faller Gerhard, Cianciolo George, Ficker Joachim, Wagner Manfred, Röllinghoff Martin. Inverse correlation of maturity and antibacterial activity in human dendritic cells. J Immunol. 2005 Apr 1;174(7):4203–4209. doi: 10.4049/jimmunol.174.7.4203. [DOI] [PubMed] [Google Scholar]
  9. Byrd T. F. Tumor necrosis factor alpha (TNFalpha) promotes growth of virulent Mycobacterium tuberculosis in human monocytes iron-mediated growth suppression is correlated with decreased release of TNFalpha from iron-treated infected monocytes. J Clin Invest. 1997 May 15;99(10):2518–2529. doi: 10.1172/JCI119436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Carmona Loreto, Hernández-García César, Vadillo Cristina, Pato Esperanza, Balsa Alejandro, González-Alvaro Isidoro, Belmonte Miguel Angel, Tena Xavier, Sanmartí Raimon, EMECAR Study Group Increased risk of tuberculosis in patients with rheumatoid arthritis. J Rheumatol. 2003 Jul;30(7):1436–1439. [PubMed] [Google Scholar]
  11. Chan J., Xing Y., Magliozzo R. S., Bloom B. R. Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. J Exp Med. 1992 Apr 1;175(4):1111–1122. doi: 10.1084/jem.175.4.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cornillie F., Shealy D., D'Haens G., Geboes K., Van Assche G., Ceuppens J., Wagner C., Schaible T., Plevy S. E., Targan S. R. Infliximab induces potent anti-inflammatory and local immunomodulatory activity but no systemic immune suppression in patients with Crohn's disease. Aliment Pharmacol Ther. 2001 Apr;15(4):463–473. doi: 10.1046/j.1365-2036.2001.00956.x. [DOI] [PubMed] [Google Scholar]
  13. Di Sabatino A., Ciccocioppo R., Cinque B., Millimaggi D., Morera R., Ricevuti L., Cifone M. G., Corazza G. R. Defective mucosal T cell death is sustainably reverted by infliximab in a caspase dependent pathway in Crohn's disease. Gut. 2004 Jan;53(1):70–77. doi: 10.1136/gut.53.1.70. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ehlers S., Benini J., Kutsch S., Endres R., Rietschel E. T., Pfeffer K. Fatal granuloma necrosis without exacerbated mycobacterial growth in tumor necrosis factor receptor p55 gene-deficient mice intravenously infected with Mycobacterium avium. Infect Immun. 1999 Jul;67(7):3571–3579. doi: 10.1128/iai.67.7.3571-3579.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Engele Matthias, Stössel Elmar, Castiglione Kirstin, Schwerdtner Nives, Wagner Manfred, Bölcskei Pal, Röllinghoff Martin, Stenger Steffen. Induction of TNF in human alveolar macrophages as a potential evasion mechanism of virulent Mycobacterium tuberculosis. J Immunol. 2002 Feb 1;168(3):1328–1337. doi: 10.4049/jimmunol.168.3.1328. [DOI] [PubMed] [Google Scholar]
  16. Feng C. G., Demangel C., Kamath A. T., Macdonald M., Britton W. J. Dendritic cells infected with Mycobacterium bovis bacillus Calmette Guerin activate CD8(+) T cells with specificity for a novel mycobacterial epitope. Int Immunol. 2001 Apr;13(4):451–458. doi: 10.1093/intimm/13.4.451. [DOI] [PubMed] [Google Scholar]
  17. Flesch I. E., Kaufmann S. H. Activation of tuberculostatic macrophage functions by gamma interferon, interleukin-4, and tumor necrosis factor. Infect Immun. 1990 Aug;58(8):2675–2677. doi: 10.1128/iai.58.8.2675-2677.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Flynn J. L., Goldstein M. M., Chan J., Triebold K. J., Pfeffer K., Lowenstein C. J., Schreiber R., Mak T. W., Bloom B. R. Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity. 1995 Jun;2(6):561–572. doi: 10.1016/1074-7613(95)90001-2. [DOI] [PubMed] [Google Scholar]
  19. Fratazzi C., Arbeit R. D., Carini C., Remold H. G. Programmed cell death of Mycobacterium avium serovar 4-infected human macrophages prevents the mycobacteria from spreading and induces mycobacterial growth inhibition by freshly added, uninfected macrophages. J Immunol. 1997 May 1;158(9):4320–4327. [PubMed] [Google Scholar]
  20. Förtsch D., Röllinghoff M., Stenger S. IL-10 converts human dendritic cells into macrophage-like cells with increased antibacterial activity against virulent Mycobacterium tuberculosis. J Immunol. 2000 Jul 15;165(2):978–987. doi: 10.4049/jimmunol.165.2.978. [DOI] [PubMed] [Google Scholar]
  21. Garcia Vidal Carolina, Rodríguez Fernández Serena, Martínez Lacasa Javier, Salavert Miquel, Vidal Rafael, Rodríguez Carballeira Monica, Garau Javier. Paradoxical response to antituberculous therapy in infliximab-treated patients with disseminated tuberculosis. Clin Infect Dis. 2005 Feb 4;40(5):756–759. doi: 10.1086/427941. [DOI] [PubMed] [Google Scholar]
  22. Gardam Michael A., Keystone Edward C., Menzies Richard, Manners Steven, Skamene Emil, Long Richard, Vinh Donald C. Anti-tumour necrosis factor agents and tuberculosis risk: mechanisms of action and clinical management. Lancet Infect Dis. 2003 Mar;3(3):148–155. doi: 10.1016/s1473-3099(03)00545-0. [DOI] [PubMed] [Google Scholar]
  23. Geijtenbeek T. B., Torensma R., van Vliet S. J., van Duijnhoven G. C., Adema G. J., van Kooyk Y., Figdor C. G. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell. 2000 Mar 3;100(5):575–585. doi: 10.1016/s0092-8674(00)80693-5. [DOI] [PubMed] [Google Scholar]
  24. Geijtenbeek Teunis B. H., Van Vliet Sandra J., Koppel Estella A., Sanchez-Hernandez Marta, Vandenbroucke-Grauls Christine M. J. E., Appelmelk Ben, Van Kooyk Yvette. Mycobacteria target DC-SIGN to suppress dendritic cell function. J Exp Med. 2003 Jan 6;197(1):7–17. doi: 10.1084/jem.20021229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Gómez-Reino Juan J., Carmona Loreto, Valverde Vicente Rodríguez, Mola Emilio Martín, Montero Maria Dolores, BIOBADASER Group Treatment of rheumatoid arthritis with tumor necrosis factor inhibitors may predispose to significant increase in tuberculosis risk: a multicenter active-surveillance report. Arthritis Rheum. 2003 Aug;48(8):2122–2127. doi: 10.1002/art.11137. [DOI] [PubMed] [Google Scholar]
  26. Hanekom Willem A., Mendillo Megan, Manca Claudia, Haslett Patrick A. J., Siddiqui M. Ruby, Barry Clifton, 3rd, Kaplan Gilla. Mycobacterium tuberculosis inhibits maturation of human monocyte-derived dendritic cells in vitro. J Infect Dis. 2003 Jul 9;188(2):257–266. doi: 10.1086/376451. [DOI] [PubMed] [Google Scholar]
  27. Heinzel Amy S., Grotzke Jeff E., Lines Rebecca A., Lewinsohn Deborah A., McNabb Andria L., Streblow Daniel N., Braud Veronique M., Grieser Heather J., Belisle John T., Lewinsohn David M. HLA-E-dependent presentation of Mtb-derived antigen to human CD8+ T cells. J Exp Med. 2002 Dec 2;196(11):1473–1481. doi: 10.1084/jem.20020609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Henderson R. A., Watkins S. C., Flynn J. L. Activation of human dendritic cells following infection with Mycobacterium tuberculosis. J Immunol. 1997 Jul 15;159(2):635–643. [PubMed] [Google Scholar]
  29. Holt P. G. Antigen presentation in the lung. Am J Respir Crit Care Med. 2000 Oct;162(4 Pt 2):S151–S156. doi: 10.1164/ajrccm.162.supplement_3.15tac2. [DOI] [PubMed] [Google Scholar]
  30. Jiao Xinan, Lo-Man Richard, Guermonprez Pierre, Fiette Laurence, Dériaud Edith, Burgaud Sophie, Gicquel Brigitte, Winter Nathalie, Leclerc Claude. Dendritic cells are host cells for mycobacteria in vivo that trigger innate and acquired immunity. J Immunol. 2002 Feb 1;168(3):1294–1301. doi: 10.4049/jimmunol.168.3.1294. [DOI] [PubMed] [Google Scholar]
  31. Juffermans N. P., Verbon A., van Deventer S. J., van Deutekom H., Belisle J. T., Ellis M. E., Speelman P., van der Poll T. Elevated chemokine concentrations in sera of human immunodeficiency virus (HIV)-seropositive and HIV-seronegative patients with tuberculosis: a possible role for mycobacterial lipoarabinomannan. Infect Immun. 1999 Aug;67(8):4295–4297. doi: 10.1128/iai.67.8.4295-4297.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Kawashima Tetsuo, Norose Yoshihiko, Watanabe Yoshiyuki, Enomoto Yutaka, Narazaki Hidehiko, Watari Eiji, Tanaka Shigeo, Takahashi Hidemi, Yano Ikuya, Brenner Michael B. Cutting edge: major CD8 T cell response to live bacillus Calmette-Guérin is mediated by CD1 molecules. J Immunol. 2003 Jun 1;170(11):5345–5348. doi: 10.4049/jimmunol.170.11.5345. [DOI] [PubMed] [Google Scholar]
  33. Keane J., Balcewicz-Sablinska M. K., Remold H. G., Chupp G. L., Meek B. B., Fenton M. J., Kornfeld H. Infection by Mycobacterium tuberculosis promotes human alveolar macrophage apoptosis. Infect Immun. 1997 Jan;65(1):298–304. doi: 10.1128/iai.65.1.298-304.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Keane J., Gershon S., Wise R. P., Mirabile-Levens E., Kasznica J., Schwieterman W. D., Siegel J. N., Braun M. M. Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med. 2001 Oct 11;345(15):1098–1104. doi: 10.1056/NEJMoa011110. [DOI] [PubMed] [Google Scholar]
  35. Keane J., Remold H. G., Kornfeld H. Virulent Mycobacterium tuberculosis strains evade apoptosis of infected alveolar macrophages. J Immunol. 2000 Feb 15;164(4):2016–2020. doi: 10.4049/jimmunol.164.4.2016. [DOI] [PubMed] [Google Scholar]
  36. Kindler V., Sappino A. P., Grau G. E., Piguet P. F., Vassalli P. The inducing role of tumor necrosis factor in the development of bactericidal granulomas during BCG infection. Cell. 1989 Mar 10;56(5):731–740. doi: 10.1016/0092-8674(89)90676-4. [DOI] [PubMed] [Google Scholar]
  37. Lane B. R., Markovitz D. M., Woodford N. L., Rochford R., Strieter R. M., Coffey M. J. TNF-alpha inhibits HIV-1 replication in peripheral blood monocytes and alveolar macrophages by inducing the production of RANTES and decreasing C-C chemokine receptor 5 (CCR5) expression. J Immunol. 1999 Oct 1;163(7):3653–3661. [PubMed] [Google Scholar]
  38. Legler D. F., Loetscher M., Roos R. S., Clark-Lewis I., Baggiolini M., Moser B. B cell-attracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5. J Exp Med. 1998 Feb 16;187(4):655–660. doi: 10.1084/jem.187.4.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Lewinsohn D. M., Briden A. L., Reed S. G., Grabstein K. H., Alderson M. R. Mycobacterium tuberculosis-reactive CD8+ T lymphocytes: the relative contribution of classical versus nonclassical HLA restriction. J Immunol. 2000 Jul 15;165(2):925–930. doi: 10.4049/jimmunol.165.2.925. [DOI] [PubMed] [Google Scholar]
  40. Lewinsohn D. M., Zhu L., Madison V. J., Dillon D. C., Fling S. P., Reed S. G., Grabstein K. H., Alderson M. R. Classically restricted human CD8+ T lymphocytes derived from Mycobacterium tuberculosis-infected cells: definition of antigenic specificity. J Immunol. 2001 Jan 1;166(1):439–446. doi: 10.4049/jimmunol.166.1.439. [DOI] [PubMed] [Google Scholar]
  41. Lin Y., Gong J., Zhang M., Xue W., Barnes P. F. Production of monocyte chemoattractant protein 1 in tuberculosis patients. Infect Immun. 1998 May;66(5):2319–2322. doi: 10.1128/iai.66.5.2319-2322.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Lorenz H. M., Grünke M., Hieronymus T., Antoni C., Nüsslein H., Schaible T. F., Manger B., Kalden J. R. In vivo blockade of tumor necrosis factor-alpha in patients with rheumatoid arthritis: longterm effects after repeated infusion of chimeric monoclonal antibody cA2. J Rheumatol. 2000 Feb;27(2):304–310. [PubMed] [Google Scholar]
  43. Lu B., Rutledge B. J., Gu L., Fiorillo J., Lukacs N. W., Kunkel S. L., North R., Gerard C., Rollins B. J. Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J Exp Med. 1998 Feb 16;187(4):601–608. doi: 10.1084/jem.187.4.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Lügering A., Schmidt M., Lügering N., Pauels H. G., Domschke W., Kucharzik T. Infliximab induces apoptosis in monocytes from patients with chronic active Crohn's disease by using a caspase-dependent pathway. Gastroenterology. 2001 Nov;121(5):1145–1157. doi: 10.1053/gast.2001.28702. [DOI] [PubMed] [Google Scholar]
  45. Mariette X., Salmon D. French guidelines for diagnosis and treating latent and active tuberculosis in patients with RA treated with TNF blockers. Ann Rheum Dis. 2003 Aug;62(8):791–791. doi: 10.1136/ard.62.8.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. McCombs C. C., Michalski J. P., Westerfield B. T., Light R. W. Human alveolar macrophages suppress the proliferative response of peripheral blood lymphocytes. Chest. 1982 Sep;82(3):266–271. doi: 10.1378/chest.82.3.266. [DOI] [PubMed] [Google Scholar]
  47. Mohan Aparna K., Coté Timothy R., Block Joel A., Manadan Augustine M., Siegel Jeffrey N., Braun M. Miles. Tuberculosis following the use of etanercept, a tumor necrosis factor inhibitor. Clin Infect Dis. 2004 Jul 16;39(3):295–299. doi: 10.1086/421494. [DOI] [PubMed] [Google Scholar]
  48. Mohan V. P., Scanga C. A., Yu K., Scott H. M., Tanaka K. E., Tsang E., Tsai M. M., Flynn J. L., Chan J. Effects of tumor necrosis factor alpha on host immune response in chronic persistent tuberculosis: possible role for limiting pathology. Infect Immun. 2001 Mar;69(3):1847–1855. doi: 10.1128/IAI.69.3.1847-1855.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Moll Heidrun. Dendritic cells and host resistance to infection. Cell Microbiol. 2003 Aug;5(8):493–500. doi: 10.1046/j.1462-5822.2003.00291.x. [DOI] [PubMed] [Google Scholar]
  50. Molloy A., Laochumroonvorapong P., Kaplan G. Apoptosis, but not necrosis, of infected monocytes is coupled with killing of intracellular bacillus Calmette-Guérin. J Exp Med. 1994 Oct 1;180(4):1499–1509. doi: 10.1084/jem.180.4.1499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Mulligan M. S., Vaporciyan A. A., Miyasaka M., Tamatani T., Ward P. A. Tumor necrosis factor alpha regulates in vivo intrapulmonary expression of ICAM-1. Am J Pathol. 1993 Jun;142(6):1739–1749. [PMC free article] [PubMed] [Google Scholar]
  52. Ngo V. N., Korner H., Gunn M. D., Schmidt K. N., Riminton D. S., Cooper M. D., Browning J. L., Sedgwick J. D., Cyster J. G. Lymphotoxin alpha/beta and tumor necrosis factor are required for stromal cell expression of homing chemokines in B and T cell areas of the spleen. J Exp Med. 1999 Jan 18;189(2):403–412. doi: 10.1084/jem.189.2.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Nicholson S., Bonecini-Almeida M. da G., Lapa e Silva J. R., Nathan C., Xie Q. W., Mumford R., Weidner J. R., Calaycay J., Geng J., Boechat N. Inducible nitric oxide synthase in pulmonary alveolar macrophages from patients with tuberculosis. J Exp Med. 1996 May 1;183(5):2293–2302. doi: 10.1084/jem.183.5.2293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Núez Martínez O., Ripoll Noiseux C., Carneros Martín J. A., González Lara V., Gregorio Marañn H. G. Reactivation tuberculosis in a patient with anti-TNF-alpha treatment. Am J Gastroenterol. 2001 May;96(5):1665–1666. doi: 10.1111/j.1572-0241.2001.03836.x. [DOI] [PubMed] [Google Scholar]
  55. Oddo M., Renno T., Attinger A., Bakker T., MacDonald H. R., Meylan P. R. Fas ligand-induced apoptosis of infected human macrophages reduces the viability of intracellular Mycobacterium tuberculosis. J Immunol. 1998 Jun 1;160(11):5448–5454. [PubMed] [Google Scholar]
  56. Paleolog E. M., Delasalle S. A., Buurman W. A., Feldmann M. Functional activities of receptors for tumor necrosis factor-alpha on human vascular endothelial cells. Blood. 1994 Oct 15;84(8):2578–2590. [PubMed] [Google Scholar]
  57. Patterson B. K., Czerniewski M., Andersson J., Sullivan Y., Su F., Jiyamapa D., Burki Z., Landay A. Regulation of CCR5 and CXCR4 expression by type 1 and type 2 cytokines: CCR5 expression is downregulated by IL-10 in CD4-positive lymphocytes. Clin Immunol. 1999 Jun;91(3):254–262. doi: 10.1006/clim.1999.4713. [DOI] [PubMed] [Google Scholar]
  58. Perkins D. J., St Clair E. W., Misukonis M. A., Weinberg J. B. Reduction of NOS2 overexpression in rheumatoid arthritis patients treated with anti-tumor necrosis factor alpha monoclonal antibody (cA2). Arthritis Rheum. 1998 Dec;41(12):2205–2210. doi: 10.1002/1529-0131(199812)41:12<2205::AID-ART16>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  59. Peters W., Scott H. M., Chambers H. F., Flynn J. L., Charo I. F., Ernst J. D. Chemokine receptor 2 serves an early and essential role in resistance to Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2001 Jul 3;98(14):7958–7963. doi: 10.1073/pnas.131207398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Pfeffer K., Matsuyama T., Kündig T. M., Wakeham A., Kishihara K., Shahinian A., Wiegmann K., Ohashi P. S., Krönke M., Mak T. W. Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell. 1993 May 7;73(3):457–467. doi: 10.1016/0092-8674(93)90134-c. [DOI] [PubMed] [Google Scholar]
  61. Porcelli S. A., Modlin R. L. The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids. Annu Rev Immunol. 1999;17:297–329. doi: 10.1146/annurev.immunol.17.1.297. [DOI] [PubMed] [Google Scholar]
  62. Rich E. A., Torres M., Sada E., Finegan C. K., Hamilton B. D., Toossi Z. Mycobacterium tuberculosis (MTB)-stimulated production of nitric oxide by human alveolar macrophages and relationship of nitric oxide production to growth inhibition of MTB. Tuber Lung Dis. 1997;78(5-6):247–255. doi: 10.1016/s0962-8479(97)90005-8. [DOI] [PubMed] [Google Scholar]
  63. Rich E. A., Tweardy D. J., Fujiwara H., Ellner J. J. Spectrum of immunoregulatory functions and properties of human alveolar macrophages. Am Rev Respir Dis. 1987 Aug;136(2):258–265. doi: 10.1164/ajrccm/136.2.258. [DOI] [PubMed] [Google Scholar]
  64. Roach Daniel R., Bean Andrew G. D., Demangel Caroline, France Malcolm P., Briscoe Helen, Britton Warwick J. TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. J Immunol. 2002 May 1;168(9):4620–4627. doi: 10.4049/jimmunol.168.9.4620. [DOI] [PubMed] [Google Scholar]
  65. Rosat J. P., Grant E. P., Beckman E. M., Dascher C. C., Sieling P. A., Frederique D., Modlin R. L., Porcelli S. A., Furlong S. T., Brenner M. B. CD1-restricted microbial lipid antigen-specific recognition found in the CD8+ alpha beta T cell pool. J Immunol. 1999 Jan 1;162(1):366–371. [PubMed] [Google Scholar]
  66. Rothlein R., Czajkowski M., O'Neill M. M., Marlin S. D., Mainolfi E., Merluzzi V. J. Induction of intercellular adhesion molecule 1 on primary and continuous cell lines by pro-inflammatory cytokines. Regulation by pharmacologic agents and neutralizing antibodies. J Immunol. 1988 Sep 1;141(5):1665–1669. [PubMed] [Google Scholar]
  67. Scallon B. J., Moore M. A., Trinh H., Knight D. M., Ghrayeb J. Chimeric anti-TNF-alpha monoclonal antibody cA2 binds recombinant transmembrane TNF-alpha and activates immune effector functions. Cytokine. 1995 Apr;7(3):251–259. doi: 10.1006/cyto.1995.0029. [DOI] [PubMed] [Google Scholar]
  68. Scallon Bernie, Cai Ann, Solowski Nancy, Rosenberg Amy, Song Xiao-Yu, Shealy David, Wagner Carrie. Binding and functional comparisons of two types of tumor necrosis factor antagonists. J Pharmacol Exp Ther. 2002 May;301(2):418–426. doi: 10.1124/jpet.301.2.418. [DOI] [PubMed] [Google Scholar]
  69. Schaible Ulrich E., Winau Florian, Sieling Peter A., Fischer Karsten, Collins Helen L., Hagens Kristine, Modlin Robert L., Brinkmann Volker, Kaufmann Stefan H. E. Apoptosis facilitates antigen presentation to T lymphocytes through MHC-I and CD1 in tuberculosis. Nat Med. 2003 Jul 20;9(8):1039–1046. doi: 10.1038/nm906. [DOI] [PubMed] [Google Scholar]
  70. Scott Holly M., Flynn JoAnne L. Mycobacterium tuberculosis in chemokine receptor 2-deficient mice: influence of dose on disease progression. Infect Immun. 2002 Nov;70(11):5946–5954. doi: 10.1128/IAI.70.11.5946-5954.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Spira Avrum, Carroll J. David, Liu Gang, Aziz Zeeshan, Shah Vishal, Kornfeld Hardy, Keane Joseph. Apoptosis genes in human alveolar macrophages infected with virulent or attenuated Mycobacterium tuberculosis: a pivotal role for tumor necrosis factor. Am J Respir Cell Mol Biol. 2003 May 14;29(5):545–551. doi: 10.1165/rcmb.2002-0310OC. [DOI] [PubMed] [Google Scholar]
  72. Stenger S., Hanson D. A., Teitelbaum R., Dewan P., Niazi K. R., Froelich C. J., Ganz T., Thoma-Uszynski S., Melián A., Bogdan C. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science. 1998 Oct 2;282(5386):121–125. doi: 10.1126/science.282.5386.121. [DOI] [PubMed] [Google Scholar]
  73. Stenger S., Mazzaccaro R. J., Uyemura K., Cho S., Barnes P. F., Rosat J. P., Sette A., Brenner M. B., Porcelli S. A., Bloom B. R. Differential effects of cytolytic T cell subsets on intracellular infection. Science. 1997 Jun 13;276(5319):1684–1687. doi: 10.1126/science.276.5319.1684. [DOI] [PubMed] [Google Scholar]
  74. Tailleux Ludovic, Schwartz Olivier, Herrmann Jean-Louis, Pivert Elisabeth, Jackson Mary, Amara Ali, Legres Luc, Dreher Donatus, Nicod Laurent P., Gluckman Jean Claude. DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J Exp Med. 2003 Jan 6;197(1):121–127. doi: 10.1084/jem.20021468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Tak P. P., Taylor P. C., Breedveld F. C., Smeets T. J., Daha M. R., Kluin P. M., Meinders A. E., Maini R. N. Decrease in cellularity and expression of adhesion molecules by anti-tumor necrosis factor alpha monoclonal antibody treatment in patients with rheumatoid arthritis. Arthritis Rheum. 1996 Jul;39(7):1077–1081. doi: 10.1002/art.1780390702. [DOI] [PubMed] [Google Scholar]
  76. Taylor J. C., Orkin R., Lanham J. Tuberculosis following therapy with infliximab may be refractory to antibiotic therapy. Rheumatology (Oxford) 2003 Jul;42(7):901–902. doi: 10.1093/rheumatology/keg158. [DOI] [PubMed] [Google Scholar]
  77. Taylor P. C., Peters A. M., Paleolog E., Chapman P. T., Elliott M. J., McCloskey R., Feldmann M., Maini R. N. Reduction of chemokine levels and leukocyte traffic to joints by tumor necrosis factor alpha blockade in patients with rheumatoid arthritis. Arthritis Rheum. 2000 Jan;43(1):38–47. doi: 10.1002/1529-0131(200001)43:1<38::AID-ANR6>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  78. Tessier P. A., Naccache P. H., Clark-Lewis I., Gladue R. P., Neote K. S., McColl S. R. Chemokine networks in vivo: involvement of C-X-C and C-C chemokines in neutrophil extravasation in vivo in response to TNF-alpha. J Immunol. 1997 Oct 1;159(7):3595–3602. [PubMed] [Google Scholar]
  79. Thoma-Uszynski S., Stenger S., Takeuchi O., Ochoa M. T., Engele M., Sieling P. A., Barnes P. F., Rollinghoff M., Bolcskei P. L., Wagner M. Induction of direct antimicrobial activity through mammalian toll-like receptors. Science. 2001 Feb 23;291(5508):1544–1547. doi: 10.1126/science.291.5508.1544. [DOI] [PubMed] [Google Scholar]
  80. Tsuchiya Tomoyoshi, Chida Kingo, Suda Takafumi, Schneeberger Eveline E., Nakamura Hirotoshi. Dendritic cell involvement in pulmonary granuloma formation elicited by bacillus calmette-guérin in rats. Am J Respir Crit Care Med. 2002 Jun 15;165(12):1640–1646. doi: 10.1164/rccm.2110086. [DOI] [PubMed] [Google Scholar]
  81. Uehira Kazutaka, Amakawa Ryuichi, Ito Tomoki, Tajima Kenichirou, Naitoh Shinsuke, Ozaki Yoshio, Shimizu Toshiki, Yamaguchi Kazuyuki, Uemura Yoshiko, Kitajima Hiroyuki. Dendritic cells are decreased in blood and accumulated in granuloma in tuberculosis. Clin Immunol. 2002 Dec;105(3):296–303. doi: 10.1006/clim.2002.5287. [DOI] [PubMed] [Google Scholar]
  82. Van den Brande Jan M. H., Braat Henri, van den Brink Gijs R., Versteeg Henri H., Bauer Christiaan A., Hoedemaeker Inge, van Montfrans Catherine, Hommes Daan W., Peppelenbosch Maikel P., van Deventer Sander J. H. Infliximab but not etanercept induces apoptosis in lamina propria T-lymphocytes from patients with Crohn's disease. Gastroenterology. 2003 Jun;124(7):1774–1785. doi: 10.1016/s0016-5085(03)00382-2. [DOI] [PubMed] [Google Scholar]
  83. Vlachaki Elina, Psathakis Kostas, Tsintiris Kostas, Iliopoulos Alexios. Delayed response to anti-tuberculosis treatment in a patient on infliximab. Respir Med. 2005 May;99(5):648–652. doi: 10.1016/j.rmed.2004.10.006. [DOI] [PubMed] [Google Scholar]
  84. Wallis R. S., Broder M. S., Wong J. Y., Hanson M. E., Beenhouwer D. O. Granulomatous infectious diseases associated with tumor necrosis factor antagonists. Clin Infect Dis. 2004 Apr 15;38(9):1261–1265. doi: 10.1086/383317. [DOI] [PubMed] [Google Scholar]
  85. Wallis Robert S., Broder Michael, Wong John, Beenhouwer David. Granulomatous infections due to tumor necrosis factor blockade: correction. Clin Infect Dis. 2004 Oct 15;39(8):1254–1255. doi: 10.1086/424455. [DOI] [PubMed] [Google Scholar]
  86. Wang C. H., Liu C. Y., Lin H. C., Yu C. T., Chung K. F., Kuo H. P. Increased exhaled nitric oxide in active pulmonary tuberculosis due to inducible NO synthase upregulation in alveolar macrophages. Eur Respir J. 1998 Apr;11(4):809–815. doi: 10.1183/09031936.98.11040809. [DOI] [PubMed] [Google Scholar]
  87. Weber C., Draude G., Weber K. S., Wübert J., Lorenz R. L., Weber P. C. Downregulation by tumor necrosis factor-alpha of monocyte CCR2 expression and monocyte chemotactic protein-1-induced transendothelial migration is antagonized by oxidized low-density lipoprotein: a potential mechanism of monocyte retention in atherosclerotic lesions. Atherosclerosis. 1999 Jul;145(1):115–123. doi: 10.1016/s0021-9150(99)00021-0. [DOI] [PubMed] [Google Scholar]
  88. Wolfe Frederick, Michaud Kaleb, Anderson Janice, Urbansky Kathy. Tuberculosis infection in patients with rheumatoid arthritis and the effect of infliximab therapy. Arthritis Rheum. 2004 Feb;50(2):372–379. doi: 10.1002/art.20009. [DOI] [PubMed] [Google Scholar]
  89. Yeager H., Jr, Sweeney J. A., Herscowitz H. B., Barsoum I. S., Kagan E. Modulation of mitogen-induced proliferation of autologous peripheral blood lymphocytes by human alveolar macrophages. Infect Immun. 1982 Oct;38(1):260–266. doi: 10.1128/iai.38.1.260-266.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Zou Jianxiang, Rudwaleit Martin, Brandt Jan, Thiel Andreas, Braun Jürgen, Sieper Joachim. Down-regulation of the nonspecific and antigen-specific T cell cytokine response in ankylosing spondylitis during treatment with infliximab. Arthritis Rheum. 2003 Mar;48(3):780–790. doi: 10.1002/art.10847. [DOI] [PubMed] [Google Scholar]

Articles from Annals of the Rheumatic Diseases are provided here courtesy of BMJ Publishing Group

RESOURCES