Skip to main content
Annals of the Rheumatic Diseases logoLink to Annals of the Rheumatic Diseases
. 2005 Nov;64(Suppl 4):iv70–iv76. doi: 10.1136/ard.2005.042523

What does tumour necrosis factor excess do to the immune system long term?

J Clark, P Vagenas, M Panesar, A Cope
PMCID: PMC1766919  PMID: 16239393

Abstract

Members of the tumour necrosis factor (TNF)/TNF-receptor (TNF-R) superfamily coordinate the immune response at multiple levels. For example, TNF, LTα, LTß and RANKL provide signals required for lymphoid neogenesis, CD27, OX-40, 4-1BB and CD30 deliver costimulatory signals to augment immune responses, while pro-apoptotic members such as TNF, CD95L and TRAIL may contribute to the termination of the response. Biological identity of individual family members has been revealed through studies of gain of function or gene deficient mutants. Most notable are the development of spontaneous inflammatory polyarthritis in human TNF-globin transgenic mice, the auto-inflammatory syndromes resulting from mutations in the 55-kDa TNF-R, and, in particular, the obligatory role for the RANKL/RANK axis in osteoclastogenesis and bone remodelling. A growing appreciation of the molecular basis of signalling pathways transduced by TNF-R has provided a framework for better understanding the biology of this expanding family. For while the rapid and robust activation of NF-κB and MAPK pathways is typical of acute TNF-R engagement, the molecular basis of sustained receptor signalling remains a mystery, in spite of its relevance to chronic inflammatory and immune responses. Focusing on T cells, this report describes some of the molecular footprints of sustained TNF-R engagement and illustrates how these may influence immune function. A common theme arising is that prolonged TNF stimulation alters signalling thresholds over time. The authors propose that one major outcome of long term exposure to TNF is a state of localised IL-2 deficiency at sites of inflammation. The implications of this deficiency are discussed.

Full Text

The Full Text of this article is available as a PDF (367.1 KB).

Figure 1.

Figure 1

 Signalling footprints of the TNF/TNF-R superfamily. Prototype signalling modules recruited to death domain expressing TNF-R family members, including TNF-R1. Each pathway is associated with specific functions, but does not signal in isolation. AP, activator protein; ERK, extracellular regulating kinase; FADD, Fas associated death domain protein; IKK, IκB kinase; JNK, Jun N-terminal kinase; MEKK, MAP/ERK kinase kinase; MKK, MAP kinase kinase; NF-κB, nuclear factor kappa B; RIP, receptor-interacting protein; TRADD, TNF receptor-associated death domain protein; TRAF, TNF receptor-associated factor.

Figure 2.

Figure 2

 (A) A signalling footprint for acute tumour necrosis factor. For TNF-R1 activation of NF-κB leads to a programme of gene transcription which includes antiapoptotic genes. In primary cells, the default response to TNF favours NF-κB over caspase activation. (B) A signalling footprint for chronic TNF. Here, attenuation of apoptotic pathways is maintained, while NF-κB dependent attenuation of reactive oxidative species (ROS) production enhances mitogen activated protein kinase phosphatase (MKP) activity thereby suppressing activation of JNK. For abbreviations see Figure l legend.

Figure 3.

Figure 3

 TNF – a potent immunomodulator of adaptive immunity. Like other costimulatory TNF-R superfamily members, acute TNF exposure can enhance antigen specific responses. As the immune response evolves, sustained expression of TNF plays a non-redundant role in resolution of adaptive immunity. However, this may lead to sustained reactivity of T cells to self-antigens and an increased predisposition to autoimmunity.

Figure 4.

Figure 4

 Tumour necrosis factor (TNF) regulates the switch from "antigen mode" to "inflammation mode" during terminal T cell differentiation. This model proposes that during the evolution of immune responses, CD4+ T cells become progressively refractory to T cell receptor (TCR) engagement. At the same time, cytokine signals may promote a unique gene expression signature favouring cell survival, migration, and effector responses. This change in thresholds of activation of signalling pathways will also lead to a state of relative interleukin (IL)-2 deficiency at sites of inflammation, with implications for maintaining immune homoeostasis. DC, dendritic cell; Teff, T effector cell.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amanullah Arshad, Azam Naiyer, Balliet Arthur, Hollander Christine, Hoffman Barbara, Fornace Albert, Liebermann Dan. Cell signalling: cell survival and a Gadd45-factor deficiency. Nature. 2003 Aug 14;424(6950):741–742. doi: 10.1038/424741b. [DOI] [PubMed] [Google Scholar]
  2. Berg L., Lampa J., Rogberg S., van Vollenhoven R., Klareskog L. Increased peripheral T cell reactivity to microbial antigens and collagen type II in rheumatoid arthritis after treatment with soluble TNFalpha receptors. Ann Rheum Dis. 2001 Feb;60(2):133–139. doi: 10.1136/ard.60.2.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beutler B., Cerami A. The biology of cachectin/TNF--a primary mediator of the host response. Annu Rev Immunol. 1989;7:625–655. doi: 10.1146/annurev.iy.07.040189.003205. [DOI] [PubMed] [Google Scholar]
  4. Bodmer Jean-Luc, Schneider Pascal, Tschopp Jürg. The molecular architecture of the TNF superfamily. Trends Biochem Sci. 2002 Jan;27(1):19–26. doi: 10.1016/s0968-0004(01)01995-8. [DOI] [PubMed] [Google Scholar]
  5. Bryl E., Vallejo A. N., Weyand C. M., Goronzy J. J. Down-regulation of CD28 expression by TNF-alpha. J Immunol. 2001 Sep 15;167(6):3231–3238. doi: 10.4049/jimmunol.167.6.3231. [DOI] [PubMed] [Google Scholar]
  6. Cao Duojia, Malmström Vivianne, Baecher-Allan Clare, Hafler David, Klareskog Lars, Trollmo Christina. Isolation and functional characterization of regulatory CD25brightCD4+ T cells from the target organ of patients with rheumatoid arthritis. Eur J Immunol. 2003 Jan;33(1):215–223. doi: 10.1002/immu.200390024. [DOI] [PubMed] [Google Scholar]
  7. Cao Duojia, van Vollenhoven Ronald, Klareskog Lars, Trollmo Christina, Malmström Vivianne. CD25brightCD4+ regulatory T cells are enriched in inflamed joints of patients with chronic rheumatic disease. Arthritis Res Ther. 2004 Jun 7;6(4):R335–R346. doi: 10.1186/ar1192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chan F. K., Chun H. J., Zheng L., Siegel R. M., Bui K. L., Lenardo M. J. A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science. 2000 Jun 30;288(5475):2351–2354. doi: 10.1126/science.288.5475.2351. [DOI] [PubMed] [Google Scholar]
  9. Charles P. J., Smeenk R. J., De Jong J., Feldmann M., Maini R. N. Assessment of antibodies to double-stranded DNA induced in rheumatoid arthritis patients following treatment with infliximab, a monoclonal antibody to tumor necrosis factor alpha: findings in open-label and randomized placebo-controlled trials. Arthritis Rheum. 2000 Nov;43(11):2383–2390. doi: 10.1002/1529-0131(200011)43:11<2383::AID-ANR2>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
  10. Clark Joanna M., Annenkov Alexander E., Panesar Manvinder, Isomäki Pia, Chernajovsky Yuti, Cope Andrew P. T cell receptor zeta reconstitution fails to restore responses of T cells rendered hyporesponsive by tumor necrosis factor alpha. Proc Natl Acad Sci U S A. 2004 Jan 26;101(6):1696–1701. doi: 10.1073/pnas.0308231100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Collette Yves, Gilles André, Pontarotti Pierre, Olive Daniel. A co-evolution perspective of the TNFSF and TNFRSF families in the immune system. Trends Immunol. 2003 Jul;24(7):387–394. doi: 10.1016/s1471-4906(03)00166-2. [DOI] [PubMed] [Google Scholar]
  12. Cope A. P., Liblau R. S., Yang X. D., Congia M., Laudanna C., Schreiber R. D., Probert L., Kollias G., McDevitt H. O. Chronic tumor necrosis factor alters T cell responses by attenuating T cell receptor signaling. J Exp Med. 1997 May 5;185(9):1573–1584. doi: 10.1084/jem.185.9.1573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cope A. P., Londei M., Chu N. R., Cohen S. B., Elliott M. J., Brennan F. M., Maini R. N., Feldmann M. Chronic exposure to tumor necrosis factor (TNF) in vitro impairs the activation of T cells through the T cell receptor/CD3 complex; reversal in vivo by anti-TNF antibodies in patients with rheumatoid arthritis. J Clin Invest. 1994 Aug;94(2):749–760. doi: 10.1172/JCI117394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cope A. P. Regulation of autoimmunity by proinflammatory cytokines. Curr Opin Immunol. 1998 Dec;10(6):669–676. doi: 10.1016/s0952-7915(98)80087-3. [DOI] [PubMed] [Google Scholar]
  15. Cope Andrew P. Studies of T-cell activation in chronic inflammation. Arthritis Res. 2002 May 9;4 (Suppl 3):S197–S211. doi: 10.1186/ar557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Croft Michael. Co-stimulatory members of the TNFR family: keys to effective T-cell immunity? Nat Rev Immunol. 2003 Aug;3(8):609–620. doi: 10.1038/nri1148. [DOI] [PubMed] [Google Scholar]
  17. De Smaele E., Zazzeroni F., Papa S., Nguyen D. U., Jin R., Jones J., Cong R., Franzoso G. Induction of gadd45beta by NF-kappaB downregulates pro-apoptotic JNK signalling. Nature. 2001 Nov 15;414(6861):308–313. doi: 10.1038/35104560. [DOI] [PubMed] [Google Scholar]
  18. Ehrenstein Michael R., Evans Jamie G., Singh Animesh, Moore Samantha, Warnes Gary, Isenberg David A., Mauri Claudia. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFalpha therapy. J Exp Med. 2004 Jul 26;200(3):277–285. doi: 10.1084/jem.20040165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gringhuis Sonja I., Papendrecht-van der Voort Ellen A. M., Leow Angela, Nivine Levarht E. W., Breedveld Ferdinand C., Verweij Cornelis L. Effect of redox balance alterations on cellular localization of LAT and downstream T-cell receptor signaling pathways. Mol Cell Biol. 2002 Jan;22(2):400–411. doi: 10.1128/MCB.22.2.400-411.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Iellem A., Mariani M., Lang R., Recalde H., Panina-Bordignon P., Sinigaglia F., D'Ambrosio D. Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4(+)CD25(+) regulatory T cells. J Exp Med. 2001 Sep 17;194(6):847–853. doi: 10.1084/jem.194.6.847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Isomäki P., Panesar M., Annenkov A., Clark J. M., Foxwell B. M., Chernajovsky Y., Cope A. P. Prolonged exposure of T cells to TNF down-regulates TCR zeta and expression of the TCR/CD3 complex at the cell surface. J Immunol. 2001 May 1;166(9):5495–5507. doi: 10.4049/jimmunol.166.9.5495. [DOI] [PubMed] [Google Scholar]
  22. Kamata Hideaki, Honda Shi-Ichi, Maeda Shin, Chang Lufen, Hirata Hajime, Karin Michael. Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell. 2005 Mar 11;120(5):649–661. doi: 10.1016/j.cell.2004.12.041. [DOI] [PubMed] [Google Scholar]
  23. Kassiotis G., Kollias G. Uncoupling the proinflammatory from the immunosuppressive properties of tumor necrosis factor (TNF) at the p55 TNF receptor level: implications for pathogenesis and therapy of autoimmune demyelination. J Exp Med. 2001 Feb 19;193(4):427–434. doi: 10.1084/jem.193.4.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kollias George, Kontoyiannis Dimitris, Douni Eleni, Kassiotis George. The role of TNF/TNFR in organ-specific and systemic autoimmunity: implications for the design of optimized 'anti-TNF' therapies. Curr Dir Autoimmun. 2002;5:30–50. doi: 10.1159/000060546. [DOI] [PubMed] [Google Scholar]
  25. Kratz A., Campos-Neto A., Hanson M. S., Ruddle N. H. Chronic inflammation caused by lymphotoxin is lymphoid neogenesis. J Exp Med. 1996 Apr 1;183(4):1461–1472. doi: 10.1084/jem.183.4.1461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kucharczak Jérôme, Simmons Matthew J., Fan Yongjun, Gélinas Céline. To be, or not to be: NF-kappaB is the answer--role of Rel/NF-kappaB in the regulation of apoptosis. Oncogene. 2003 Dec 8;22(56):8961–8982. doi: 10.1038/sj.onc.1207230. [DOI] [PubMed] [Google Scholar]
  27. Lenardo M., Chan K. M., Hornung F., McFarland H., Siegel R., Wang J., Zheng L. Mature T lymphocyte apoptosis--immune regulation in a dynamic and unpredictable antigenic environment. Annu Rev Immunol. 1999;17:221–253. doi: 10.1146/annurev.immunol.17.1.221. [DOI] [PubMed] [Google Scholar]
  28. Locksley R. M., Killeen N., Lenardo M. J. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell. 2001 Feb 23;104(4):487–501. doi: 10.1016/s0092-8674(01)00237-9. [DOI] [PubMed] [Google Scholar]
  29. Lorenz H. M., Antoni C., Valerius T., Repp R., Grünke M., Schwerdtner N., Nüsslein H., Woody J., Kalden J. R., Manger B. In vivo blockade of TNF-alpha by intravenous infusion of a chimeric monoclonal TNF-alpha antibody in patients with rheumatoid arthritis. Short term cellular and molecular effects. J Immunol. 1996 Feb 15;156(4):1646–1653. [PubMed] [Google Scholar]
  30. Mackay Fabienne, Browning Jeffrey L. BAFF: a fundamental survival factor for B cells. Nat Rev Immunol. 2002 Jul;2(7):465–475. doi: 10.1038/nri844. [DOI] [PubMed] [Google Scholar]
  31. Malek Thomas R., Bayer Allison L. Tolerance, not immunity, crucially depends on IL-2. Nat Rev Immunol. 2004 Sep;4(9):665–674. doi: 10.1038/nri1435. [DOI] [PubMed] [Google Scholar]
  32. Malek Thomas R., Yu Aixin, Vincek Vladimir, Scibelli Paul, Kong Lin. CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rbeta-deficient mice. Implications for the nonredundant function of IL-2. Immunity. 2002 Aug;17(2):167–178. doi: 10.1016/s1074-7613(02)00367-9. [DOI] [PubMed] [Google Scholar]
  33. Maurice M. M., Lankester A. C., Bezemer A. C., Geertsma M. F., Tak P. P., Breedveld F. C., van Lier R. A., Verweij C. L. Defective TCR-mediated signaling in synovial T cells in rheumatoid arthritis. J Immunol. 1997 Sep 15;159(6):2973–2978. [PubMed] [Google Scholar]
  34. Papa Salvatore, Zazzeroni Francesca, Pham Can G., Bubici Concetta, Franzoso Guido. Linking JNK signaling to NF-kappaB: a key to survival. J Cell Sci. 2004 Oct 15;117(Pt 22):5197–5208. doi: 10.1242/jcs.01483. [DOI] [PubMed] [Google Scholar]
  35. Pasare Chandrashekhar, Medzhitov Ruslan. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science. 2003 Jan 16;299(5609):1033–1036. doi: 10.1126/science.1078231. [DOI] [PubMed] [Google Scholar]
  36. Poppers D. M., Schwenger P., Vilcek J. Persistent tumor necrosis factor signaling in normal human fibroblasts prevents the complete resynthesis of I kappa B-alpha. J Biol Chem. 2000 Sep 22;275(38):29587–29593. doi: 10.1074/jbc.M002806200. [DOI] [PubMed] [Google Scholar]
  37. Remans Philip H. J., Gringhuis Sonja I., van Laar Jacob M., Sanders Marjolein E., Papendrecht-van der Voort Ellen A. M., Zwartkruis Fried J. T., Levarht E. W. Nivine, Rosas Marcela, Coffer Paul J., Breedveld Ferdinand C. Rap1 signaling is required for suppression of Ras-generated reactive oxygen species and protection against oxidative stress in T lymphocytes. J Immunol. 2004 Jul 15;173(2):920–931. doi: 10.4049/jimmunol.173.2.920. [DOI] [PubMed] [Google Scholar]
  38. Saccani Simona, Pantano Serafino, Natoli Gioacchino. Modulation of NF-kappaB activity by exchange of dimers. Mol Cell. 2003 Jun;11(6):1563–1574. doi: 10.1016/s1097-2765(03)00227-2. [DOI] [PubMed] [Google Scholar]
  39. Salmon M., Scheel-Toellner D., Huissoon A. P., Pilling D., Shamsadeen N., Hyde H., D'Angeac A. D., Bacon P. A., Emery P., Akbar A. N. Inhibition of T cell apoptosis in the rheumatoid synovium. J Clin Invest. 1997 Feb 1;99(3):439–446. doi: 10.1172/JCI119178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Schmidt-Supprian Marc, Courtois Gilles, Tian Jane, Coyle Anthony J., Israël Alain, Rajewsky Klaus, Pasparakis Manolis. Mature T cells depend on signaling through the IKK complex. Immunity. 2003 Sep;19(3):377–389. doi: 10.1016/s1074-7613(03)00237-1. [DOI] [PubMed] [Google Scholar]
  41. Setoguchi Ruka, Hori Shohei, Takahashi Takeshi, Sakaguchi Shimon. Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J Exp Med. 2005 Mar 7;201(5):723–735. doi: 10.1084/jem.20041982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Tang G., Minemoto Y., Dibling B., Purcell N. H., Li Z., Karin M., Lin A. Inhibition of JNK activation through NF-kappaB target genes. Nature. 2001 Nov 15;414(6861):313–317. doi: 10.1038/35104568. [DOI] [PubMed] [Google Scholar]
  43. Theill Lars E., Boyle William J., Penninger Josef M. RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu Rev Immunol. 2001 Oct 4;20:795–823. doi: 10.1146/annurev.immunol.20.100301.064753. [DOI] [PubMed] [Google Scholar]
  44. Wajant H., Pfizenmaier K., Scheurich P. Tumor necrosis factor signaling. Cell Death Differ. 2003 Jan;10(1):45–65. doi: 10.1038/sj.cdd.4401189. [DOI] [PubMed] [Google Scholar]
  45. Wallach D., Varfolomeev E. E., Malinin N. L., Goltsev Y. V., Kovalenko A. V., Boldin M. P. Tumor necrosis factor receptor and Fas signaling mechanisms. Annu Rev Immunol. 1999;17:331–367. doi: 10.1146/annurev.immunol.17.1.331. [DOI] [PubMed] [Google Scholar]
  46. Wolf M., Schimpl A., Hünig T. Control of T cell hyperactivation in IL-2-deficient mice by CD4(+)CD25(-) and CD4(+)CD25(+) T cells: evidence for two distinct regulatory mechanisms. Eur J Immunol. 2001 Jun;31(6):1637–1645. doi: 10.1002/1521-4141(200106)31:6<1637::aid-immu1637>3.0.co;2-t. [DOI] [PubMed] [Google Scholar]
  47. Yokota S., Geppert T. D., Lipsky P. E. Enhancement of antigen- and mitogen-induced human T lymphocyte proliferation by tumor necrosis factor-alpha. J Immunol. 1988 Jan 15;140(2):531–536. [PubMed] [Google Scholar]
  48. de Kleer Ismé M., Wedderburn Lucy R., Taams Leonie S., Patel Alka, Varsani Hemlata, Klein Mark, de Jager Wilco, Pugayung Gisela, Giannoni Francesca, Rijkers Ger. CD4+CD25bright regulatory T cells actively regulate inflammation in the joints of patients with the remitting form of juvenile idiopathic arthritis. J Immunol. 2004 May 15;172(10):6435–6443. doi: 10.4049/jimmunol.172.10.6435. [DOI] [PubMed] [Google Scholar]
  49. van Amelsfort Jocea M. R., Jacobs Kim M. G., Bijlsma Johannes W. J., Lafeber Floris P. J. G., Taams Leonie S. CD4(+)CD25(+) regulatory T cells in rheumatoid arthritis: differences in the presence, phenotype, and function between peripheral blood and synovial fluid. Arthritis Rheum. 2004 Sep;50(9):2775–2785. doi: 10.1002/art.20499. [DOI] [PubMed] [Google Scholar]
  50. van Oosten B. W., Barkhof F., Truyen L., Boringa J. B., Bertelsmann F. W., von Blomberg B. M., Woody J. N., Hartung H. P., Polman C. H. Increased MRI activity and immune activation in two multiple sclerosis patients treated with the monoclonal anti-tumor necrosis factor antibody cA2. Neurology. 1996 Dec;47(6):1531–1534. doi: 10.1212/wnl.47.6.1531. [DOI] [PubMed] [Google Scholar]

Articles from Annals of the Rheumatic Diseases are provided here courtesy of BMJ Publishing Group

RESOURCES