Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Feb;177(4):1017–1022. doi: 10.1128/jb.177.4.1017-1022.1995

Proton pumping and the internal pH of yeast cells, measured with pyranine introduced by electroporation.

A Peña 1, J Ramírez 1, G Rosas 1, M Calahorra 1
PMCID: PMC176697  PMID: 7860582

Abstract

The internal pH of yeast cells was determined by measuring the fluorescence changes of pyranine (8-hydroxy-1,3,6-pyrene-trisulfonic acid), which was introduced into the cells by electroporation. This may be a suitable procedure for the following reasons. (i) Only minor changes in the physiological status of the cells seemed to be produced. (ii) The dye did not seem to leak at a significant rate from the cells. (iii) Different incubation conditions produced large fluorescence changes in the dye, which in general agree with present knowledge of the proton movements of the yeast cell under different conditions. (iv) Pyranine introduced by electroporation seemed to be located in the cytoplasm and to avoid the vacuole, and therefore it probably measured actual cytoplasmic pH. (v) Correction factors to obtain a more precise estimation of the internal pH are not difficult to apply, and the procedure may be useful for other yeasts and microorganisms, as well as for the introduction of other substances into cells. Values for the cytoplasmic pHs of yeast cells that were higher than those reported previously were obtained, probably because this fluorescent indicator did not seem to penetrate into the cell vacuole.

Full Text

The Full Text of this article is available as a PDF (433.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballarin-Denti A., Den Hollander J. A., Sanders D., Slayman C. W., Slayman C. L. Kinetics and pH-dependence of glycine-proton symport in Saccharomyces cerevisiae. Biochim Biophys Acta. 1984 Nov 21;778(1):1–16. doi: 10.1016/0005-2736(84)90442-5. [DOI] [PubMed] [Google Scholar]
  2. Becker D. M., Guarente L. High-efficiency transformation of yeast by electroporation. Methods Enzymol. 1991;194:182–187. doi: 10.1016/0076-6879(91)94015-5. [DOI] [PubMed] [Google Scholar]
  3. CONWAY E. J., BRADY T. G. Biological production of acid and alkali; quantitative relations of succinic and carbonic acids to the potassium and hydrogen ion exchange in fermenting yeast. Biochem J. 1950 Sep;47(3):360–369. doi: 10.1042/bj0470360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CONWAY E. J., DOWNEY M. pH values of the yeast cell. Biochem J. 1950 Sep;47(3):355–360. doi: 10.1042/bj0470355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Castle A. M., Macnab R. M., Shulman R. G. Coupling between the sodium and proton gradients in respiring Escherichia coli cells measured by 23Na and 31P nuclear magnetic resonance. J Biol Chem. 1986 Jun 15;261(17):7797–7806. [PubMed] [Google Scholar]
  6. Clement N. R., Gould J. M. Pyranine (8-hydroxy-1,3,6-pyrenetrisulfonate) as a probe of internal aqueous hydrogen ion concentration in phospholipid vesicles. Biochemistry. 1981 Mar 17;20(6):1534–1538. doi: 10.1021/bi00509a019. [DOI] [PubMed] [Google Scholar]
  7. Freeman S. A., Wang M. A., Weaver J. C. Theory of electroporation of planar bilayer membranes: predictions of the aqueous area, change in capacitance, and pore-pore separation. Biophys J. 1994 Jul;67(1):42–56. doi: 10.1016/S0006-3495(94)80453-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Haworth R. S., Fliegel L. Intracellular pH in Schizosaccharomyces pombe--comparison with Saccharomyces cerevisiae. Mol Cell Biochem. 1993 Jul 21;124(2):131–140. doi: 10.1007/BF00929205. [DOI] [PubMed] [Google Scholar]
  9. Kano K., Fendler J. H. Pyranine as a sensitive pH probe for liposome interiors and surfaces. pH gradients across phospholipid vesicles. Biochim Biophys Acta. 1978 May 18;509(2):289–299. doi: 10.1016/0005-2736(78)90048-2. [DOI] [PubMed] [Google Scholar]
  10. Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
  11. Peña A., Cinco G., Gómez-Puyou A., Tuena M. Effect of the pH of the incubation medium on glycolysis and respiration in Saccharomyces cerevisiae. Arch Biochem Biophys. 1972 Dec;153(2):413–425. doi: 10.1016/0003-9861(72)90359-1. [DOI] [PubMed] [Google Scholar]
  12. Peña A. Studies on the mechanism of K+ transport in yeast. Arch Biochem Biophys. 1975 Apr;167(2):397–409. doi: 10.1016/0003-9861(75)90480-4. [DOI] [PubMed] [Google Scholar]
  13. Rottenberg H., Moreno-Sanchez R. The proton pumping activity of H(+)-ATPases: an improved fluorescence assay. Biochim Biophys Acta. 1993 Nov 2;1183(1):161–170. doi: 10.1016/0005-2728(93)90014-7. [DOI] [PubMed] [Google Scholar]
  14. Rottenberg H. The measurement of membrane potential and deltapH in cells, organelles, and vesicles. Methods Enzymol. 1979;55:547–569. doi: 10.1016/0076-6879(79)55066-6. [DOI] [PubMed] [Google Scholar]
  15. Slavík J. Intracellular pH of yeast cells measured with fluorescent probes. FEBS Lett. 1982 Apr 5;140(1):22–26. doi: 10.1016/0014-5793(82)80512-7. [DOI] [PubMed] [Google Scholar]
  16. de KLOET S., van WERMESKERKEN R., KONINGSBERGER V. V. Studies on protein synthesis by protoplasts of Saccharomyces carlsbergensis. I. The effect of ribonuclease on protein synthesis. Biochim Biophys Acta. 1961 Feb 12;47:138–143. doi: 10.1016/0006-3002(61)90838-1. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES