Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Mar;177(5):1129–1136. doi: 10.1128/jb.177.5.1129-1136.1995

Catabolic ornithine transcarbamylase of Halobacterium halobium (salinarium): purification, characterization, sequence determination, and evolution.

A Ruepp 1, H N Müller 1, F Lottspeich 1, J Soppa 1
PMCID: PMC176715  PMID: 7868583

Abstract

Halobacterium halobium (salinarium) is able to grow fermentatively via the arginine deiminase pathway, which is mediated by three enzymes and one membrane-bound arginine-ornithine antiporter. One of the enzymes, catabolic ornithine transcarbamylase (cOTCase), was purified from fermentatively grown cultures by gel filtration and ammonium sulfate-mediated hydrophobic chromatography. It consists of a single type of subunit with an apparent molecular mass of 41 kDa. As is common for proteins of halophilic Archaea, the cOTCase is unstable below 1 M salt. In contrast to the cOTCase from Pseudomonas aeruginosa, the halophilic enzyme exhibits Michaelis-Menten kinetics with both carbamylphosphate and ornithine as substrates with Km values of 0.4 and 8 mM, respectively. The N-terminal sequences of the protein and four peptides were determined, comprising about 30% of the polypeptide. The sequence information was used to clone and sequence the corresponding gene, argB. It codes for a polypeptide of 295 amino acids with a calculated molecular mass of 32 kDa and an amino acid composition which is typical of halophilic proteins. The native molecular mass was determined to be 200 kDa, and therefore the cOTCase is a hexamer of identical subunits. The deduced protein sequence was compared to the cOTCase of P. aeruginosa and 14 anabolic OTCases, and a phylogenetic tree was constructed. The halobacterial cOTCase is more distantly related to the cOTCase than to the anabolic OTCase of P. aeruginosa. It is found in a group with the anabolic OTCases of Bacillus subtilis, P. aeruginosa, and Mycobacterium bovis.

Full Text

The Full Text of this article is available as a PDF (338.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdelal A. T. Arginine catabolism by microorganisms. Annu Rev Microbiol. 1979;33:139–168. doi: 10.1146/annurev.mi.33.100179.001035. [DOI] [PubMed] [Google Scholar]
  2. Baur H., Luethi E., Stalon V., Mercenier A., Haas D. Sequence analysis and expression of the arginine-deiminase and carbamate-kinase genes of Pseudomonas aeruginosa. Eur J Biochem. 1989 Jan 15;179(1):53–60. doi: 10.1111/j.1432-1033.1989.tb14520.x. [DOI] [PubMed] [Google Scholar]
  3. Baur H., Stalon V., Falmagne P., Luethi E., Haas D. Primary and quaternary structure of the catabolic ornithine carbamoyltransferase from Pseudomonas aeruginosa. Extensive sequence homology with the anabolic ornithine carbamoyltransferases of Escherichia coli. Eur J Biochem. 1987 Jul 1;166(1):111–117. doi: 10.1111/j.1432-1033.1987.tb13489.x. [DOI] [PubMed] [Google Scholar]
  4. Baur H., Tricot C., Stalon V., Haas D. Converting catabolic ornithine carbamoyltransferase to an anabolic enzyme. J Biol Chem. 1990 Sep 5;265(25):14728–14731. [PubMed] [Google Scholar]
  5. Bourdineaud J. P., Heierli D., Gamper M., Verhoogt H. J., Driessen A. J., Konings W. N., Lazdunski C., Haas D. Characterization of the arcD arginine:ornithine exchanger of Pseudomonas aeruginosa. Localization in the cytoplasmic membrane and a topological model. J Biol Chem. 1993 Mar 15;268(8):5417–5424. [PubMed] [Google Scholar]
  6. Brown J. W., Daniels C. J., Reeve J. N. Gene structure, organization, and expression in archaebacteria. Crit Rev Microbiol. 1989;16(4):287–338. doi: 10.3109/10408418909105479. [DOI] [PubMed] [Google Scholar]
  7. Buluwela L., Forster A., Boehm T., Rabbitts T. H. A rapid procedure for colony screening using nylon filters. Nucleic Acids Res. 1989 Jan 11;17(1):452–452. doi: 10.1093/nar/17.1.452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cunin R., Glansdorff N., Piérard A., Stalon V. Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev. 1986 Sep;50(3):314–352. doi: 10.1128/mr.50.3.314-352.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dower W. J., Miller J. F., Ragsdale C. W. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 1988 Jul 11;16(13):6127–6145. doi: 10.1093/nar/16.13.6127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dundas I. E. Ornithine carbamoyltransferase from Halobacterium salinarium. Eur J Biochem. 1972 May 23;27(2):376–380. doi: 10.1111/j.1432-1033.1972.tb01847.x. [DOI] [PubMed] [Google Scholar]
  11. Dundas I. E. Purification of ornithine carbamoyltransferase from Halobacterium salinarium. Eur J Biochem. 1970 Oct;16(2):393–398. doi: 10.1111/j.1432-1033.1970.tb01093.x. [DOI] [PubMed] [Google Scholar]
  12. Falmagne P., Portetelle D., Stalon V. Immunological and structural relatedness of catabolic ornithine carbamoyltransferases and the anabolic enzymes of enterobacteria. J Bacteriol. 1985 Feb;161(2):714–719. doi: 10.1128/jb.161.2.714-719.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Felsenstein J. Phylogenies from molecular sequences: inference and reliability. Annu Rev Genet. 1988;22:521–565. doi: 10.1146/annurev.ge.22.120188.002513. [DOI] [PubMed] [Google Scholar]
  14. Gamper M., Ganter B., Polito M. R., Haas D. RNA processing modulates the expression of the arcDABC operon in Pseudomonas aeruginosa. J Mol Biol. 1992 Aug 20;226(4):943–957. doi: 10.1016/0022-2836(92)91044-p. [DOI] [PubMed] [Google Scholar]
  15. Gamper M., Zimmermann A., Haas D. Anaerobic regulation of transcription initiation in the arcDABC operon of Pseudomonas aeruginosa. J Bacteriol. 1991 Aug;173(15):4742–4750. doi: 10.1128/jb.173.15.4742-4750.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Goldsmith J. O., Kuo L. C. Protonation of arginine 57 of Escherichia coli ornithine transcarbamoylase regulates substrate binding and turnover. J Biol Chem. 1993 Sep 5;268(25):18485–18490. [PubMed] [Google Scholar]
  17. Goldsmith J. O., Lee S., Zambidis I., Kuo L. C. Control of L-ornithine specificity in Escherichia coli ornithine transcarbamoylase. Site-directed mutagenic and pH studies. J Biol Chem. 1991 Oct 5;266(28):18626–18634. [PubMed] [Google Scholar]
  18. Hartmann R., Sickinger H. D., Oesterhelt D. Anaerobic growth of halobacteria. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3821–3825. doi: 10.1073/pnas.77.7.3821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hass D., Evans R., Mercenier A., Simon J. P., Stalon V. Genetic and physiological characterization of Pseudomonas aeruginosa mutants affected in the catabolic ornithine carbamoyltransferase. J Bacteriol. 1979 Sep;139(3):713–720. doi: 10.1128/jb.139.3.713-720.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Helbing C., Gergely G., Atkinson B. G. Sequential up-regulation of thyroid hormone beta receptor, ornithine transcarbamylase, and carbamyl phosphate synthetase mRNAs in the liver of Rana catesbeiana tadpoles during spontaneous and thyroid hormone-induced metamorphosis. Dev Genet. 1992;13(4):289–301. doi: 10.1002/dvg.1020130406. [DOI] [PubMed] [Google Scholar]
  21. Horwich A. L., Fenton W. A., Williams K. R., Kalousek F., Kraus J. P., Doolittle R. F., Konigsberg W., Rosenberg L. E. Structure and expression of a complementary DNA for the nuclear coded precursor of human mitochondrial ornithine transcarbamylase. Science. 1984 Jun 8;224(4653):1068–1074. doi: 10.1126/science.6372096. [DOI] [PubMed] [Google Scholar]
  22. Huygen R., Crabeel M., Glansdorff N. Nucleotide sequence of the ARG3 gene of the yeast Saccharomyces cerevisiae encoding ornithine carbamoyltransferase. Comparison with other carbamoyltransferases. Eur J Biochem. 1987 Jul 15;166(2):371–377. doi: 10.1111/j.1432-1033.1987.tb13525.x. [DOI] [PubMed] [Google Scholar]
  23. Itoh Y., Soldati L., Stalon V., Falmagne P., Terawaki Y., Leisinger T., Haas D. Anabolic ornithine carbamoyltransferase of Pseudomonas aeruginosa: nucleotide sequence and transcriptional control of the argF structural gene. J Bacteriol. 1988 Jun;170(6):2725–2734. doi: 10.1128/jb.170.6.2725-2734.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kuo L. C., Zambidis I., Caron C. Triggering of allostery in an enzyme by a point mutation: ornithine transcarbamoylase. Science. 1989 Aug 4;245(4917):522–524. doi: 10.1126/science.2667139. [DOI] [PubMed] [Google Scholar]
  25. Legrain C., Stalon V., Noullez J. P., Mercenier A., Simon J. P., Broman K., Wiame J. M. Structure and function of ornithine carbamoyltransferases. Eur J Biochem. 1977 Nov 1;80(2):401–409. doi: 10.1111/j.1432-1033.1977.tb11895.x. [DOI] [PubMed] [Google Scholar]
  26. Marcq S., Diaz-Ruano A., Charlier P., Dideberg O., Tricot C., Piérard A., Stalon V. Molecular size and symmetry of Pseudomonas aeruginosa catabolic ornithine carbamoyltransferase. An X-ray crystallography analysis. J Mol Biol. 1991 Jul 5;220(1):9–12. doi: 10.1016/0022-2836(91)90375-g. [DOI] [PubMed] [Google Scholar]
  27. Martin P. R., Cooperider J. W., Mulks M. H. Sequence of the argF gene encoding ornithine transcarbamoylase from Neisseria gonorrhoeae. Gene. 1990 Sep 28;94(1):139–140. doi: 10.1016/0378-1119(90)90482-7. [DOI] [PubMed] [Google Scholar]
  28. McDowall S., van Heeswijck R., Hoogenraad N. Site-directed mutagenesis of Arg60 and Cys271 in ornithine transcarbamylase from rat liver. Protein Eng. 1990 Oct;4(1):73–77. doi: 10.1093/protein/4.1.73. [DOI] [PubMed] [Google Scholar]
  29. Mercenier A., Simon J. P., Vander Wauven C., Haas D., Stalon V. Regulation of enzyme synthesis in the arginine deiminase pathway of Pseudomonas aeruginosa. J Bacteriol. 1980 Oct;144(1):159–163. doi: 10.1128/jb.144.1.159-163.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mevarech M., Leicht W., Werber M. M. Hydrophobic chromatography and fractionation of enzymes from extremely halophilic bacteria using decreasing concentration gradients of ammonium sulfate. Biochemistry. 1976 Jun 1;15(11):2383–2387. doi: 10.1021/bi00656a021. [DOI] [PubMed] [Google Scholar]
  31. Mosqueda G., Van den Broeck G., Saucedo O., Bailey A. M., Alvarez-Morales A., Herrera-Estrella L. Isolation and characterization of the gene from Pseudomonas syringae pv. phaseolicola encoding the phaseolotoxin-insensitive ornithine carbamoyltransferase. Mol Gen Genet. 1990 Jul;222(2-3):461–466. doi: 10.1007/BF00633857. [DOI] [PubMed] [Google Scholar]
  32. Mountain A., Smith M. C., Baumberg S. Nucleotide sequence of the Bacillus subtilis argF gene encoding ornithine carbamoyltransferase. Nucleic Acids Res. 1990 Aug 11;18(15):4594–4594. doi: 10.1093/nar/18.15.4594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Muto A., Osawa S. The guanine and cytosine content of genomic DNA and bacterial evolution. Proc Natl Acad Sci U S A. 1987 Jan;84(1):166–169. doi: 10.1073/pnas.84.1.166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Olsen G. J., Woese C. R., Overbeek R. The winds of (evolutionary) change: breathing new life into microbiology. J Bacteriol. 1994 Jan;176(1):1–6. doi: 10.1128/jb.176.1.1-6.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Skrzypek M., Borsuk P., Maleszka R. Cloning and sequencing of the ornithine carbamoyltransferase gene from Pachysolen tannophilus. Yeast. 1990 Mar-Apr;6(2):141–148. doi: 10.1002/yea.320060208. [DOI] [PubMed] [Google Scholar]
  36. Soppa J., Duschl J., Oesterhelt D. Bacterioopsin, haloopsin, and sensory opsin I of the halobacterial isolate Halobacterium sp. strain SG1: three new members of a growing family. J Bacteriol. 1993 May;175(9):2720–2726. doi: 10.1128/jb.175.9.2720-2726.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Soppa J., Oesterhelt D. Bacteriorhodopsin mutants of Halobacterium sp. GRB. I. The 5-bromo-2'-deoxyuridine selection as a method to isolate point mutants in halobacteria. J Biol Chem. 1989 Aug 5;264(22):13043–13048. [PubMed] [Google Scholar]
  38. Stalon V., Legrain C., Wiame J. M. Anabolic ornithine carbamolytransferase of Pseudomonas. The bases of its functional specialization. Eur J Biochem. 1977 Apr 1;74(2):319–327. doi: 10.1111/j.1432-1033.1977.tb11396.x. [DOI] [PubMed] [Google Scholar]
  39. Takiguchi M., Miura S., Mori M., Tatibana M., Nagata S., Kaziro Y. Molecular cloning and nucleotide sequence of cDNA for rat ornithine carbamoyltransferase precursor. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7412–7416. doi: 10.1073/pnas.81.23.7412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Timm J., Van Rompaey I., Tricot C., Massaer M., Haeseleer F., Fauconnier A., Stalon V., Bollen A., Jacobs P. Molecular cloning, characterization and purification of ornithine carbamoyltransferase from Mycobacterium bovis BCG. Mol Gen Genet. 1992 Sep;234(3):475–480. doi: 10.1007/BF00538708. [DOI] [PubMed] [Google Scholar]
  41. Tricot C., De Coen J. L., Momin P., Falmagne P., Stalon V. Evolutionary relationships among bacterial carbamoyltransferases. J Gen Microbiol. 1989 Sep;135(9):2453–2464. doi: 10.1099/00221287-135-9-2453. [DOI] [PubMed] [Google Scholar]
  42. Tricot C., Schmid S., Baur H., Villeret V., Dideberg O., Haas D., Stalon V. Catabolic ornithine carbamoyltransferase of Pseudomonas aeruginosa. Changes of allosteric properties resulting from modifications at the C-terminus. Eur J Biochem. 1994 Apr 1;221(1):555–561. doi: 10.1111/j.1432-1033.1994.tb18768.x. [DOI] [PubMed] [Google Scholar]
  43. Upshall A., Gilbert T., Saari G., O'Hara P. J., Weglenski P., Berse B., Miller K., Timberlake W. E. Molecular analysis of the argB gene of Aspergillus nidulans. Mol Gen Genet. 1986 Aug;204(2):349–354. doi: 10.1007/BF00425521. [DOI] [PubMed] [Google Scholar]
  44. Van Huffel C., Dubois E., Messenguy F. Cloning and sequencing of arg3 and arg11 genes of Schizosaccharomyces pombe on a 10-kb DNA fragment. Heterologous expression and mitochondrial targeting of their translation products. Eur J Biochem. 1992 Apr 1;205(1):33–43. doi: 10.1111/j.1432-1033.1992.tb16749.x. [DOI] [PubMed] [Google Scholar]
  45. Van Vliet F., Cunin R., Jacobs A., Piette J., Gigot D., Lauwereys M., Piérard A., Glansdorff N. Evolutionary divergence of genes for ornithine and aspartate carbamoyl-transferases--complete sequence and mode of regulation of the Escherichia coli argF gene; comparison of argF with argI and pyrB. Nucleic Acids Res. 1984 Aug 10;12(15):6277–6289. doi: 10.1093/nar/12.15.6277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Veres G., Gibbs R. A., Scherer S. E., Caskey C. T. The molecular basis of the sparse fur mouse mutation. Science. 1987 Jul 24;237(4813):415–417. doi: 10.1126/science.3603027. [DOI] [PubMed] [Google Scholar]
  47. Verhoogt H. J., Smit H., Abee T., Gamper M., Driessen A. J., Haas D., Konings W. N. arcD, the first gene of the arc operon for anaerobic arginine catabolism in Pseudomonas aeruginosa, encodes an arginine-ornithine exchanger. J Bacteriol. 1992 Mar;174(5):1568–1573. doi: 10.1128/jb.174.5.1568-1573.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Woese C. R., Kandler O., Wheelis M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4576–4579. doi: 10.1073/pnas.87.12.4576. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES