Abstract
The Candida albicans clone cDNA10 was isolated on the basis that it encodes a protein which is immunogenic during infections in humans (R. K. Swoboda, G. Bertram, H. Hollander, D. Greenspan, J. S. Greenspan, N. A. R. Gow, G. W. Gooday, and A. J. P. Brown, Infect. Immun. 61:4263-4271, 1993). cDNA10 was used to isolate its cognate gene, and both the cDNA and gene were sequenced, revealing a major open reading frame with the potential to encode a basic protein of 256 amino acids with a predicted molecular weight of 29 kDa. Over its entire length, the open reading frame showed strong homology at both the nucleic acid (75 to 78%) and amino acid (79 to 81%) levels to two Saccharomyces cerevisiae genes encoding the 40S ribosomal protein, Rp10. Therefore, our C. albicans gene was renamed RP10. Northern (RNA) analyses in C. albicans 3153 revealed that RP10 expression is regulated in a manner very similar to that of S. cerevisiae ribosomal genes. The level of the RP10 mRNA decreased upon heat shock (from 25 to 45 degrees C) and was tightly regulated during growth. Maximal levels of the mRNA were reached during mid-exponential phase before they decreased to negligible levels in stationary phase. The level of the RP10 mRNA was induced only transiently during the yeast-to-hyphal morphological transition but did not appear to respond to hyphal development per se.
Full Text
The Full Text of this article is available as a PDF (442.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aoki S., Ito-Kuwa S., Nakamura Y., Masuhara T. Mitochondrial behaviour during the yeast-hypha transition of Candida albicans. Microbios. 1989;60(243):79–86. [PubMed] [Google Scholar]
- Auclair D., Lang B. F., Forest P., Desgroseillers L. Analysis of genes encoding highly conserved lysine-rich proteins in Aplysia californica and Saccharomyces cerevisiae. Eur J Biochem. 1994 Mar 15;220(3):997–1003. doi: 10.1111/j.1432-1033.1994.tb18704.x. [DOI] [PubMed] [Google Scholar]
- Birse C. E., Irwin M. Y., Fonzi W. A., Sypherd P. S. Cloning and characterization of ECE1, a gene expressed in association with cell elongation of the dimorphic pathogen Candida albicans. Infect Immun. 1993 Sep;61(9):3648–3655. doi: 10.1128/iai.61.9.3648-3655.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Borg M., Rüchel R. Expression of extracellular acid proteinase by proteolytic Candida spp. during experimental infection of oral mucosa. Infect Immun. 1988 Mar;56(3):626–631. doi: 10.1128/iai.56.3.626-631.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Breathnach R., Chambon P. Organization and expression of eucaryotic split genes coding for proteins. Annu Rev Biochem. 1981;50:349–383. doi: 10.1146/annurev.bi.50.070181.002025. [DOI] [PubMed] [Google Scholar]
- Buffo J., Herman M. A., Soll D. R. A characterization of pH-regulated dimorphism in Candida albicans. Mycopathologia. 1984 Mar 15;85(1-2):21–30. doi: 10.1007/BF00436698. [DOI] [PubMed] [Google Scholar]
- Calderone R. A. Recognition between Candida albicans and host cells. Trends Microbiol. 1993 May;1(2):55–58. doi: 10.1016/0966-842x(93)90033-n. [DOI] [PubMed] [Google Scholar]
- Cutler J. E. Putative virulence factors of Candida albicans. Annu Rev Microbiol. 1991;45:187–218. doi: 10.1146/annurev.mi.45.100191.001155. [DOI] [PubMed] [Google Scholar]
- Delbrück S., Ernst J. F. Morphogenesis-independent regulation of actin transcript levels in the pathogenic yeast Candida albicans. Mol Microbiol. 1993 Nov;10(4):859–866. doi: 10.1111/j.1365-2958.1993.tb00956.x. [DOI] [PubMed] [Google Scholar]
- Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
- Franklyn K. M., Warmington J. R., Ott A. K., Ashman R. B. An immunodominant antigen of Candida albicans shows homology to the enzyme enolase. Immunol Cell Biol. 1990 Jun;68(Pt 3):173–178. doi: 10.1038/icb.1990.24. [DOI] [PubMed] [Google Scholar]
- Garrett J. M., Singh K. K., Vonder Haar R. A., Emr S. D. Mitochondrial protein import: isolation and characterization of the Saccharomyces cerevisiae MFT1 gene. Mol Gen Genet. 1991 Mar;225(3):483–491. doi: 10.1007/BF00261691. [DOI] [PubMed] [Google Scholar]
- Gimeno C. J., Fink G. R. Induction of pseudohyphal growth by overexpression of PHD1, a Saccharomyces cerevisiae gene related to transcriptional regulators of fungal development. Mol Cell Biol. 1994 Mar;14(3):2100–2112. doi: 10.1128/mcb.14.3.2100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gow N. A., Gooday G. W. A model for the germ tube formation and mycelial growth form of Candida albicans. Sabouraudia. 1984;22(2):137–144. doi: 10.1080/00362178485380211. [DOI] [PubMed] [Google Scholar]
- Gow N. A., Gooday G. W. Cytological aspects of dimorphism in Candida albicans. Crit Rev Microbiol. 1987;15(1):73–78. doi: 10.3109/10408418709104449. [DOI] [PubMed] [Google Scholar]
- Gow N. A., Henderson G., Gooday G. W. Cytological interrelationships between the cell cycle and duplication cycle of Candida albicans. Microbios. 1986;47(191):97–105. [PubMed] [Google Scholar]
- Herruer M. H., Mager W. H., Raué H. A., Vreken P., Wilms E., Planta R. J. Mild temperature shock affects transcription of yeast ribosomal protein genes as well as the stability of their mRNAs. Nucleic Acids Res. 1988 Aug 25;16(16):7917–7929. doi: 10.1093/nar/16.16.7917. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hube B., Monod M., Schofield D. A., Brown A. J., Gow N. A. Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans. Mol Microbiol. 1994 Oct;14(1):87–99. doi: 10.1111/j.1365-2958.1994.tb01269.x. [DOI] [PubMed] [Google Scholar]
- Ishiguro A., Homma M., Torii S., Tanaka K. Identification of Candida albicans antigens reactive with immunoglobulin E antibody of human sera. Infect Immun. 1992 Apr;60(4):1550–1557. doi: 10.1128/iai.60.4.1550-1557.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ito M., Yasui A., Komamine A. A gene family homologous to the S-phase specific gene in higher plants is essential for cell proliferation in Saccharomyces cerevisiae. FEBS Lett. 1992 Apr 13;301(1):29–33. doi: 10.1016/0014-5793(92)80203-s. [DOI] [PubMed] [Google Scholar]
- Kozak M. The scanning model for translation: an update. J Cell Biol. 1989 Feb;108(2):229–241. doi: 10.1083/jcb.108.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kwon-Chung K. J., Lehman D., Good C., Magee P. T. Genetic evidence for role of extracellular proteinase in virulence of Candida albicans. Infect Immun. 1985 Sep;49(3):571–575. doi: 10.1128/iai.49.3.571-575.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee K. L., Buckley H. R., Campbell C. C. An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida Albicans. Sabouraudia. 1975 Jul;13(2):148–153. doi: 10.1080/00362177585190271. [DOI] [PubMed] [Google Scholar]
- Lillehaug J. R., Kleppe K. Effect of salts and polyamines on T4 polynucleotide kinase. Biochemistry. 1975 Mar 25;14(6):1225–1229. doi: 10.1021/bi00677a021. [DOI] [PubMed] [Google Scholar]
- Lindquist S. Regulation of protein synthesis during heat shock. Nature. 1981 Sep 24;293(5830):311–314. doi: 10.1038/293311a0. [DOI] [PubMed] [Google Scholar]
- Liu H., Styles C. A., Fink G. R. Elements of the yeast pheromone response pathway required for filamentous growth of diploids. Science. 1993 Dec 10;262(5140):1741–1744. doi: 10.1126/science.8259520. [DOI] [PubMed] [Google Scholar]
- Macdonald F., Odds F. C. Virulence for mice of a proteinase-secreting strain of Candida albicans and a proteinase-deficient mutant. J Gen Microbiol. 1983 Feb;129(2):431–438. doi: 10.1099/00221287-129-2-431. [DOI] [PubMed] [Google Scholar]
- Martin M. V., Craig G. T., Lamb D. J. An investigation of the role of true hypha production in the pathogenesis of experimental oral candidosis. Sabouraudia. 1984;22(6):471–476. doi: 10.1080/00362178485380741. [DOI] [PubMed] [Google Scholar]
- Matthews R. C. Pathogenicity determinants of Candida albicans: potential targets for immunotherapy? Microbiology. 1994 Jul;140(Pt 7):1505–1511. doi: 10.1099/13500872-140-7-1505. [DOI] [PubMed] [Google Scholar]
- Matthews R., Burnie J. Cloning of a DNA sequence encoding a major fragment of the 47 kilodalton stress protein homologue of Candida albicans. FEMS Microbiol Lett. 1989 Jul 1;51(1):25–30. doi: 10.1016/0378-1097(89)90071-2. [DOI] [PubMed] [Google Scholar]
- Metspalu A., Rebane A., Hoth S., Pooga M., Stahl J., Kruppa J. Human ribosomal protein S3a: cloning of the cDNA and primary structure of the protein. Gene. 1992 Oct 1;119(2):313–316. doi: 10.1016/0378-1119(92)90289-2. [DOI] [PubMed] [Google Scholar]
- Moore P. A., Sagliocco F. A., Wood R. M., Brown A. J. Yeast glycolytic mRNAs are differentially regulated. Mol Cell Biol. 1991 Oct;11(10):5330–5337. doi: 10.1128/mcb.11.10.5330. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ross I. K., De Bernardis F., Emerson G. W., Cassone A., Sullivan P. A. The secreted aspartate proteinase of Candida albicans: physiology of secretion and virulence of a proteinase-deficient mutant. J Gen Microbiol. 1990 Apr;136(4):687–694. doi: 10.1099/00221287-136-4-687. [DOI] [PubMed] [Google Scholar]
- Ryley J. F., Ryley N. G. Candida albicans--do mycelia matter? J Med Vet Mycol. 1990;28(3):225–239. [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Santiago T. C., Purvis I. J., Bettany A. J., Brown A. J. The relationship between mRNA stability and length in Saccharomyces cerevisiae. Nucleic Acids Res. 1986 Nov 11;14(21):8347–8360. doi: 10.1093/nar/14.21.8347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sehgal A., Patil N., Chao M. A constitutive promoter directs expression of the nerve growth factor receptor gene. Mol Cell Biol. 1988 Aug;8(8):3160–3167. doi: 10.1128/mcb.8.8.3160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shen H. D., Choo K. B., Tang R. B., Lee C. F., Yeh J. Y., Han S. H. Allergenic components of Candida albicans identified by immunoblot analysis. Clin Exp Allergy. 1989 Mar;19(2):191–195. doi: 10.1111/j.1365-2222.1989.tb02363.x. [DOI] [PubMed] [Google Scholar]
- Sherwood J., Gow N. A., Gooday G. W., Gregory D. W., Marshall D. Contact sensing in Candida albicans: a possible aid to epithelial penetration. J Med Vet Mycol. 1992;30(6):461–469. doi: 10.1080/02681219280000621. [DOI] [PubMed] [Google Scholar]
- Smith D. J., Cooper M., DeTiani M., Losberger C., Payton M. A. The Candida albicans PMM1 gene encoding phosphomannomutase complements a Saccharomyces cerevisiae sec 53-6 mutation. Curr Genet. 1992 Dec;22(6):501–503. doi: 10.1007/BF00326416. [DOI] [PubMed] [Google Scholar]
- Sobel J. D., Muller G., Buckley H. R. Critical role of germ tube formation in the pathogenesis of candidal vaginitis. Infect Immun. 1984 Jun;44(3):576–580. doi: 10.1128/iai.44.3.576-580.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soll D. R. The regulation of cellular differentiation in the dimorphic yeast Candida albicans. Bioessays. 1986 Jul;5(1):5–11. doi: 10.1002/bies.950050103. [DOI] [PubMed] [Google Scholar]
- Stewart E., Hawser S., Gow N. A. Changes in internal and external pH accompanying growth of Candida albicans: studies of non-dimorphic variants. Arch Microbiol. 1989;151(2):149–153. doi: 10.1007/BF00414430. [DOI] [PubMed] [Google Scholar]
- Swoboda R. K., Bertram G., Colthurst D. R., Tuite M. F., Gow N. A., Gooday G. W., Brown A. J. Regulation of the gene encoding translation elongation factor 3 during growth and morphogenesis in Candida albicans. Microbiology. 1994 Oct;140(Pt 10):2611–2616. doi: 10.1099/00221287-140-10-2611. [DOI] [PubMed] [Google Scholar]
- Swoboda R. K., Bertram G., Delbrück S., Ernst J. F., Gow N. A., Gooday G. W., Brown A. J. Fluctuations in glycolytic mRNA levels during morphogenesis in Candida albicans reflect underlying changes in growth and are not a response to cellular dimorphism. Mol Microbiol. 1994 Aug;13(4):663–672. doi: 10.1111/j.1365-2958.1994.tb00460.x. [DOI] [PubMed] [Google Scholar]
- Swoboda R. K., Bertram G., Hollander H., Greenspan D., Greenspan J. S., Gow N. A., Gooday G. W., Brown A. J. Glycolytic enzymes of Candida albicans are nonubiquitous immunogens during candidiasis. Infect Immun. 1993 Oct;61(10):4263–4271. doi: 10.1128/iai.61.10.4263-4271.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takakura H., Tsunasawa S., Miyagi M., Warner J. R. NH2-terminal acetylation of ribosomal proteins of Saccharomyces cerevisiae. J Biol Chem. 1992 Mar 15;267(8):5442–5445. [PubMed] [Google Scholar]
- Torosantucci A., Boccanera M., Casalinuovo I., Pellegrini G., Cassone A. Differences in the antigenic expression of immunomodulatory mannoprotein constituents on yeast and mycelial forms of Candida albicans. J Gen Microbiol. 1990 Jul;136(7):1421–1428. doi: 10.1099/00221287-136-7-1421. [DOI] [PubMed] [Google Scholar]
- Warner J. R. Synthesis of ribosomes in Saccharomyces cerevisiae. Microbiol Rev. 1989 Jun;53(2):256–271. doi: 10.1128/mr.53.2.256-271.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wicksteed B. L., Collins I., Dershowitz A., Stateva L. I., Green R. P., Oliver S. G., Brown A. J., Newlon C. S. A physical comparison of chromosome III in six strains of Saccharomyces cerevisiae. Yeast. 1994 Jan;10(1):39–57. doi: 10.1002/yea.320100105. [DOI] [PubMed] [Google Scholar]
- Wicksteed B. L., Roberts A. B., Sagliocco F. A., Brown A. J. The complete sequence of a 7.5 kb region of chromosome III from Saccharomyces cerevisiae that lies between CRY1 and MAT. Yeast. 1991 Oct;7(7):761–772. doi: 10.1002/yea.320070711. [DOI] [PubMed] [Google Scholar]
- Yokoyama K., Takeo K. Differences of asymmetrical division between the pseudomycelial and yeast forms of Candida albicans and their effect on multiplication. Arch Microbiol. 1983 Jun;134(3):251–253. doi: 10.1007/BF00407768. [DOI] [PubMed] [Google Scholar]
