Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Mar;177(5):1307–1314. doi: 10.1128/jb.177.5.1307-1314.1995

Functional analysis of the gene encoding the clavaminate synthase 2 isoenzyme involved in clavulanic acid biosynthesis in Streptomyces clavuligerus.

A S Paradkar 1, S E Jensen 1
PMCID: PMC176738  PMID: 7868606

Abstract

A Streptomyces clavuligerus mutant disrupted in cas2, encoding the clavaminate synthase (CAS2) isoenzyme, was constructed by a gene replacement procedure. The resulting cas2 mutant showed no clavulanic acid production when grown in starch-asparagine medium. However, in soy medium, the cas2 mutant did produce clavulanic acid, although in amounts less than those produced by wild-type cultures. This medium-dependent leaky phenotype correlated well with the presence of the cas1 transcript, encoding the CAS1 isoenzyme, in cultures grown in soy medium and with its absence from those grown in starch-asparagine medium. This suggested that CAS1 and CAS2 both contribute to clavulanic acid production but that their production is regulated differently. Under nutritional conditions in which cas1 expression is blocked, cas2 becomes essential for clavulanic acid production. Northern (RNA) analysis revealed that while cas1 is transcribed as a 1.4-kb monocistronic transcript only, cas2 is transcribed both as a 1.2-kb monocistronic transcript and as part of a 5.3-kb polycistronic transcript. High-resolution S1 nuclease analysis located the transcription start point of the monocistronic cas2 transcript at a C residue 103 nucleotides upstream from the cas2 start codon.

Full Text

The Full Text of this article is available as a PDF (392.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aharonowitz Y., Demain A. L. Carbon catabolite regulation of cephalosporin production in Streptomyces clavuligerus. Antimicrob Agents Chemother. 1978 Aug;14(2):159–164. doi: 10.1128/aac.14.2.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aidoo K. A., Wong A., Alexander D. C., Rittammer R. A., Jensen S. E. Cloning, sequencing and disruption of a gene from Streptomyces clavuligerus involved in clavulanic acid biosynthesis. Gene. 1994 Sep 15;147(1):41–46. doi: 10.1016/0378-1119(94)90036-1. [DOI] [PubMed] [Google Scholar]
  3. Bailey C. R., Winstanley D. J. Inhibition of restriction in Streptomyces clavuligerus by heat treatment. J Gen Microbiol. 1986 Oct;132(10):2945–2947. doi: 10.1099/00221287-132-10-2945. [DOI] [PubMed] [Google Scholar]
  4. Belasco J. G., Higgins C. F. Mechanisms of mRNA decay in bacteria: a perspective. Gene. 1988 Dec 10;72(1-2):15–23. doi: 10.1016/0378-1119(88)90123-0. [DOI] [PubMed] [Google Scholar]
  5. Clayton T. M., Bibb M. J. Streptomyces promoter-probe plasmids that utilise the xylE gene of Pseudomonas putida. Nucleic Acids Res. 1990 Feb 25;18(4):1077–1077. doi: 10.1093/nar/18.4.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Doran J. L., Leskiw B. K., Petrich A. K., Westlake D. W., Jensen S. E. Production of Streptomyces clavuligerus isopenicillin N synthase in Escherichia coli using two-cistron expression systems. J Ind Microbiol. 1990 Jun;5(4):197–206. doi: 10.1007/BF01569677. [DOI] [PubMed] [Google Scholar]
  7. Foulstone M., Reading C. Assay of amoxicillin and clavulanic acid, the components of Augmentin, in biological fluids with high-performance liquid chromatography. Antimicrob Agents Chemother. 1982 Nov;22(5):753–762. doi: 10.1128/aac.22.5.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Green P. J., Pines O., Inouye M. The role of antisense RNA in gene regulation. Annu Rev Biochem. 1986;55:569–597. doi: 10.1146/annurev.bi.55.070186.003033. [DOI] [PubMed] [Google Scholar]
  9. Inouye M. Antisense RNA: its functions and applications in gene regulation--a review. Gene. 1988 Dec 10;72(1-2):25–34. doi: 10.1016/0378-1119(88)90124-2. [DOI] [PubMed] [Google Scholar]
  10. Malmberg L. H., Hu W. S., Sherman D. H. Precursor flux control through targeted chromosomal insertion of the lysine epsilon-aminotransferase (lat) gene in cephamycin C biosynthesis. J Bacteriol. 1993 Nov;175(21):6916–6924. doi: 10.1128/jb.175.21.6916-6924.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Marsh E. N., Chang M. D., Townsend C. A. Two isozymes of clavaminate synthase central to clavulanic acid formation: cloning and sequencing of both genes from Streptomyces clavuligerus. Biochemistry. 1992 Dec 22;31(50):12648–12657. doi: 10.1021/bi00165a015. [DOI] [PubMed] [Google Scholar]
  12. Okamoto K., Freundlich M. Mechanism for the autogenous control of the crp operon: transcriptional inhibition by a divergent RNA transcript. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5000–5004. doi: 10.1073/pnas.83.14.5000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Paradkar A. S., Petrich A. K., Leskiw B. K., Aidoo K. A., Jensen S. E. Transcriptional analysis and heterologous expression of the gene encoding beta-lactamase inhibitor protein (BLIP) from Streptomyces clavuligerus. Gene. 1994 Jun 24;144(1):31–36. doi: 10.1016/0378-1119(94)90199-6. [DOI] [PubMed] [Google Scholar]
  14. Petrich A. K., Leskiw B. K., Paradkar A. S., Jensen S. E. Transcriptional mapping of the genes encoding the early enzymes of the cephamycin biosynthetic pathway of Streptomyces clavuligerus. Gene. 1994 May 3;142(1):41–48. doi: 10.1016/0378-1119(94)90352-2. [DOI] [PubMed] [Google Scholar]
  15. Pruess D. L., Kellett M. Ro 22-5417, a new clavam antibiotic from Streptomyces clavuligerus. I. Discovery and biological activity. J Antibiot (Tokyo) 1983 Mar;36(3):208–212. doi: 10.7164/antibiotics.36.208. [DOI] [PubMed] [Google Scholar]
  16. Rao R. N., Richardson M. A., Kuhstoss S. Cosmid shuttle vectors for cloning and analysis of Streptomyces DNA. Methods Enzymol. 1987;153:166–198. doi: 10.1016/0076-6879(87)53053-1. [DOI] [PubMed] [Google Scholar]
  17. Round A., Hamilton W. Prenatal screening for Down's Syndrome. BMJ. 1993 Nov 6;307(6913):1211–1212. doi: 10.1136/bmj.307.6913.1211-c. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Salowe S. P., Marsh E. N., Townsend C. A. Purification and characterization of clavaminate synthase from Streptomyces clavuligerus: an unusual oxidative enzyme in natural product biosynthesis. Biochemistry. 1990 Jul 10;29(27):6499–6508. doi: 10.1021/bi00479a023. [DOI] [PubMed] [Google Scholar]
  19. Sanders M. E., Nicholson M. A. A method for genetic transformation of nonprotoplasted Streptococcus lactis. Appl Environ Microbiol. 1987 Aug;53(8):1730–1736. doi: 10.1128/aem.53.8.1730-1736.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Strohl W. R. Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res. 1992 Mar 11;20(5):961–974. doi: 10.1093/nar/20.5.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Vieira J., Messing J. Production of single-stranded plasmid DNA. Methods Enzymol. 1987;153:3–11. doi: 10.1016/0076-6879(87)53044-0. [DOI] [PubMed] [Google Scholar]
  22. Ward J. M., Hodgson J. E. The biosynthetic genes for clavulanic acid and cephamycin production occur as a 'super-cluster' in three Streptomyces. FEMS Microbiol Lett. 1993 Jun 15;110(2):239–242. doi: 10.1111/j.1574-6968.1993.tb06326.x. [DOI] [PubMed] [Google Scholar]
  23. Wu X., Roy K. L. Complete nucleotide sequence of a linear plasmid from Streptomyces clavuligerus and characterization of its RNA transcripts. J Bacteriol. 1993 Jan;175(1):37–52. doi: 10.1128/jb.175.1.37-52.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES