Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Mar;177(5):1315–1325. doi: 10.1128/jb.177.5.1315-1325.1995

Roles of the three transcriptional attenuators of the Bacillus subtilis pyrimidine biosynthetic operon in the regulation of its expression.

Y Lu 1, R J Turner 1, R L Switzer 1
PMCID: PMC176739  PMID: 7868607

Abstract

Expression of the Bacillus subtilis pyr operon is regulated by exogenous pyrimidines and the protein product of the first gene of the operon, PyrR. It has been proposed that PyrR mediates transcriptional attenuation at three untranslated segments of the operon (R.J. Turner, Y. Lu, and R.L. Switzer, J. Bacteriol., 176:3708-3722, 1994). In this study, transcriptional fusions of the pyr promoter followed by the pyr attenuation sequences, either individually or in tandem to a lacZ reporter gene, were used to examine the physiological functions of all three attenuators through their ability to affect beta-galactosidase expression. These fusions were studied as chromosomal integrants in various B. subtilis strains to examine the entire range of control by pyrimidines, PyrR dependence, amd developmental control of pyr gene expression. The nutritional regulation of each attenuator separately was roughly equivalent to that of the other two and was totally dependent upon PyrR, and that of tandem attenuators was cumulative. The regulation of a fusion of the spac promoter followed by the pyrP:pyrB intercistronic region to lacZ produced results similar to those obtained with the corresponding fusion containing the pyr promoter, demonstrating that attenuator-dependent regulation is independent of the promoter. Extreme pyrimidine starvation gave rise to two- to threefold-higher levels of expression of a pyr-lacZ fusion that lacked attenuators, independent of PyrR, than were obtained with cells that were not starved. Increased expression of a similar spac-lacZ fusion during pyrimidine starvation was also observed, however, indicating that attenuator-independent regulation is not a specific property of the pyr operon. Conversion of the initiator AUG codon in a small open reading frame in the pyrP:pyrB intercistronic region to UAG reduced expression by about half but did not alter regulation by pyrimidines, which excludes the possibility of a coupled transcription-translation attenuation mechanism. Developmental regulation of pyr expression during early stationary phase was found to be dependent upon the attenuators and PyrR, and the participation of SpoOA was excluded.

Full Text

The Full Text of this article is available as a PDF (334.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anagnostopoulos C., Spizizen J. REQUIREMENTS FOR TRANSFORMATION IN BACILLUS SUBTILIS. J Bacteriol. 1961 May;81(5):741–746. doi: 10.1128/jb.81.5.741-746.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Babitzke P., Yanofsky C. Reconstitution of Bacillus subtilis trp attenuation in vitro with TRAP, the trp RNA-binding attenuation protein. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):133–137. doi: 10.1073/pnas.90.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beijer L., Nilsson R. P., Holmberg C., Rutberg L. The glpP and glpF genes of the glycerol regulon in Bacillus subtilis. J Gen Microbiol. 1993 Feb;139(2):349–359. doi: 10.1099/00221287-139-2-349. [DOI] [PubMed] [Google Scholar]
  4. Bernlohr D. A., Switzer R. L. Regulation of Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase inactivation in vivo. J Bacteriol. 1983 Feb;153(2):937–949. doi: 10.1128/jb.153.2.937-949.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bond R. W., Field A. S., Switzer R. L. Nutritional regulation of degradation of aspartate transcarbamylase and of bulk protein in exponentially growing Bacillus subtilis cells. J Bacteriol. 1983 Jan;153(1):253–258. doi: 10.1128/jb.153.1.253-258.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brückner R., Shoseyov O., Doi R. H. Multiple active forms of a novel serine protease from Bacillus subtilis. Mol Gen Genet. 1990 May;221(3):486–490. doi: 10.1007/BF00259415. [DOI] [PubMed] [Google Scholar]
  7. Burbulys D., Trach K. A., Hoch J. A. Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell. 1991 Feb 8;64(3):545–552. doi: 10.1016/0092-8674(91)90238-t. [DOI] [PubMed] [Google Scholar]
  8. Contente S., Dubnau D. Characterization of plasmid transformation in Bacillus subtilis: kinetic properties and the effect of DNA conformation. Mol Gen Genet. 1979 Jan 2;167(3):251–258. doi: 10.1007/BF00267416. [DOI] [PubMed] [Google Scholar]
  9. Crutz A. M., Steinmetz M., Aymerich S., Richter R., Le Coq D. Induction of levansucrase in Bacillus subtilis: an antitermination mechanism negatively controlled by the phosphotransferase system. J Bacteriol. 1990 Feb;172(2):1043–1050. doi: 10.1128/jb.172.2.1043-1050.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Debarbouille M., Arnaud M., Fouet A., Klier A., Rapoport G. The sacT gene regulating the sacPA operon in Bacillus subtilis shares strong homology with transcriptional antiterminators. J Bacteriol. 1990 Jul;172(7):3966–3973. doi: 10.1128/jb.172.7.3966-3973.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ebbole D. J., Zalkin H. Cloning and characterization of a 12-gene cluster from Bacillus subtilis encoding nine enzymes for de novo purine nucleotide synthesis. J Biol Chem. 1987 Jun 15;262(17):8274–8287. [PubMed] [Google Scholar]
  12. Ebbole D. J., Zalkin H. Detection of pur operon-attenuated mRNA and accumulated degradation intermediates in Bacillus subtilis. J Biol Chem. 1988 Aug 5;263(22):10894–10902. [PubMed] [Google Scholar]
  13. Ghim S. Y., Neuhard J. The pyrimidine biosynthesis operon of the thermophile Bacillus caldolyticus includes genes for uracil phosphoribosyltransferase and uracil permease. J Bacteriol. 1994 Jun;176(12):3698–3707. doi: 10.1128/jb.176.12.3698-3707.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ghim S. Y., Nielsen P., Neuhard J. Molecular characterization of pyrimidine biosynthesis genes from the thermophile Bacillus caldolyticus. Microbiology. 1994 Mar;140(Pt 3):479–491. doi: 10.1099/00221287-140-3-479. [DOI] [PubMed] [Google Scholar]
  15. Gollnick P. Regulation of the Bacillus subtilis trp operon by an RNA-binding protein. Mol Microbiol. 1994 Mar;11(6):991–997. doi: 10.1111/j.1365-2958.1994.tb00377.x. [DOI] [PubMed] [Google Scholar]
  16. Grandoni J. A., Fulmer S. B., Brizzio V., Zahler S. A., Calvo J. M. Regions of the Bacillus subtilis ilv-leu operon involved in regulation by leucine. J Bacteriol. 1993 Dec;175(23):7581–7593. doi: 10.1128/jb.175.23.7581-7593.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Grundy F. J., Henkin T. M. tRNA as a positive regulator of transcription antitermination in B. subtilis. Cell. 1993 Aug 13;74(3):475–482. doi: 10.1016/0092-8674(93)80049-k. [DOI] [PubMed] [Google Scholar]
  18. Holmberg C., Rutberg B. Expression of the gene encoding glycerol-3-phosphate dehydrogenase (glpD) in Bacillus subtilis is controlled by antitermination. Mol Microbiol. 1991 Dec;5(12):2891–2900. doi: 10.1111/j.1365-2958.1991.tb01849.x. [DOI] [PubMed] [Google Scholar]
  19. Houman F., Diaz-Torres M. R., Wright A. Transcriptional antitermination in the bgl operon of E. coli is modulated by a specific RNA binding protein. Cell. 1990 Sep 21;62(6):1153–1163. doi: 10.1016/0092-8674(90)90392-r. [DOI] [PubMed] [Google Scholar]
  20. Ikuta N., Souza M. B., Valencia F. F., Castro M. E., Schenberg A. C., Pizzirani-Kleiner A., Astolfi-Filho S. The alpha-amylase gene as a marker for gene cloning: direct screening of recombinant clones. Biotechnology (N Y) 1990 Mar;8(3):241–242. doi: 10.1038/nbt0390-241. [DOI] [PubMed] [Google Scholar]
  21. Kuroda M. I., Henner D., Yanofsky C. cis-acting sites in the transcript of the Bacillus subtilis trp operon regulate expression of the operon. J Bacteriol. 1988 Jul;170(7):3080–3088. doi: 10.1128/jb.170.7.3080-3088.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lerner C. G., Stephenson B. T., Switzer R. L. Structure of the Bacillus subtilis pyrimidine biosynthetic (pyr) gene cluster. J Bacteriol. 1987 May;169(5):2202–2206. doi: 10.1128/jb.169.5.2202-2206.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lerner C. G., Switzer R. L. Cloning and structure of the Bacillus subtilis aspartate transcarbamylase gene (pyrB). J Biol Chem. 1986 Aug 25;261(24):11156–11165. [PubMed] [Google Scholar]
  24. Lu Y., Chen N. Y., Paulus H. Identification of aecA mutations in Bacillus subtilis as nucleotide substitutions in the untranslated leader region of the aspartokinase II operon. J Gen Microbiol. 1991 May;137(5):1135–1143. doi: 10.1099/00221287-137-5-1135. [DOI] [PubMed] [Google Scholar]
  25. Maurizi M. R., Switzer R. L. Aspartate transcarbamylase synthesis ceases prior to inactivation of the enzyme in Bacillus subtilis. J Bacteriol. 1978 Sep;135(3):943–951. doi: 10.1128/jb.135.3.943-951.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Otridge J., Gollnick P. MtrB from Bacillus subtilis binds specifically to trp leader RNA in a tryptophan-dependent manner. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):128–132. doi: 10.1073/pnas.90.1.128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Quinn C. L., Stephenson B. T., Switzer R. L. Functional organization and nucleotide sequence of the Bacillus subtilis pyrimidine biosynthetic operon. J Biol Chem. 1991 May 15;266(14):9113–9127. [PubMed] [Google Scholar]
  28. Roland K. L., Liu C. G., Turnbough C. L., Jr Role of the ribosome in suppressing transcriptional termination at the pyrBI attenuator of Escherichia coli K-12. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7149–7153. doi: 10.1073/pnas.85.19.7149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Shimotsu H., Henner D. J. Construction of a single-copy integration vector and its use in analysis of regulation of the trp operon of Bacillus subtilis. Gene. 1986;43(1-2):85–94. doi: 10.1016/0378-1119(86)90011-9. [DOI] [PubMed] [Google Scholar]
  31. Shimotsu H., Kuroda M. I., Yanofsky C., Henner D. J. Novel form of transcription attenuation regulates expression the Bacillus subtilis tryptophan operon. J Bacteriol. 1986 May;166(2):461–471. doi: 10.1128/jb.166.2.461-471.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Shindler D. B., Prescott L. M. Improvements on the Prescott-Jones method for the colorimetric analysis of ureido compounds. Anal Biochem. 1979 Sep 1;97(2):421–422. doi: 10.1016/0003-2697(79)90096-4. [DOI] [PubMed] [Google Scholar]
  33. Stemmer W. P. A 20-minute ethidium bromide/high-salt extraction protocol for plasmid DNA. Biotechniques. 1991 Jun;10(6):726–726. [PubMed] [Google Scholar]
  34. Turner R. J., Lu Y., Switzer R. L. Regulation of the Bacillus subtilis pyrimidine biosynthetic (pyr) gene cluster by an autogenous transcriptional attenuation mechanism. J Bacteriol. 1994 Jun;176(12):3708–3722. doi: 10.1128/jb.176.12.3708-3722.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  36. Yansura D. G., Henner D. J. Use of the Escherichia coli lac repressor and operator to control gene expression in Bacillus subtilis. Proc Natl Acad Sci U S A. 1984 Jan;81(2):439–443. doi: 10.1073/pnas.81.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES