Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Mar;177(6):1444–1451. doi: 10.1128/jb.177.6.1444-1451.1995

The S-layer from Bacillus stearothermophilus DSM 2358 functions as an adhesion site for a high-molecular-weight amylase.

E Egelseer 1, I Schocher 1, M Sára 1, U B Sleytr 1
PMCID: PMC176758  PMID: 7533757

Abstract

The S-layer lattice from Bacillus stearothermophilus DSM 2358 completely covers the cell surface and exhibits oblique symmetry. During growth of B. stearothermophilus DSM 2358 on starch medium, three amylases with molecular weights of 58,000, 98,000, and 184,000 were secreted into the culture fluid, but only the high-molecular-weight enzyme was found to be cell associated. Studies of interactions between cell wall components and amylases revealed no affinity of the high-molecular-weight amylase to isolated peptidoglycan. On the other hand, this enzyme was always found to be associated with S-layer self-assembly products or S-layer fragments released during preparation of spheroplasts by treatment of whole cells with lysozyme. The molar ratio of S-layer subunits to the bound amylase was approximately 8:1, which corresponded to one enzyme molecule per four morphological subunits. Immunoblotting experiments with polyclonal antisera against the high-molecular-weight amylase revealed a strong immunological signal in response to the enzyme but no cross-reaction with the S-layer protein or the smaller amylases. Immunogold labeling of whole cells with anti-amylase antiserum showed that the high-molecular-weight amylase is located on the outer face of the S-layer lattice. Because extraction of the amylase was possible without disintegration of the S-layer lattice into its constituent subunits, it can be excluded that the enzyme is incorporated into the crystal lattice and participates in the self-assembly process. Affinity experiments strongly suggest the presence of a specific recognition mechanism between the amylase molecules and S-layer protein domains either exposed on the outermost surface or inside the pores. In summary, results obtained in this study confirmed that the S-layer protein from B. stearothermophilus DSM 2358 functions as an adhesion site for a high-molecular-weight amylase.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beveridge T. J., Graham L. L. Surface layers of bacteria. Microbiol Rev. 1991 Dec;55(4):684–705. doi: 10.1128/mr.55.4.684-705.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beveridge T. J. Surface arrays on the wall of Sporosarcina ureae. J Bacteriol. 1979 Sep;139(3):1039–1048. doi: 10.1128/jb.139.3.1039-1048.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beveridge T. J. Ultrastructure, chemistry, and function of the bacterial wall. Int Rev Cytol. 1981;72:229–317. doi: 10.1016/s0074-7696(08)61198-5. [DOI] [PubMed] [Google Scholar]
  4. Blaser M. J., Gotschlich E. C. Surface array protein of Campylobacter fetus. Cloning and gene structure. J Biol Chem. 1990 Aug 25;265(24):14529–14535. [PubMed] [Google Scholar]
  5. Breitwieser A., Gruber K., Sleytr U. B. Evidence for an S-layer protein pool in the peptidoglycan of Bacillus stearothermophilus. J Bacteriol. 1992 Dec;174(24):8008–8015. doi: 10.1128/jb.174.24.8008-8015.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fujino T., Béguin P., Aubert J. P. Organization of a Clostridium thermocellum gene cluster encoding the cellulosomal scaffolding protein CipA and a protein possibly involved in attachment of the cellulosome to the cell surface. J Bacteriol. 1993 Apr;175(7):1891–1899. doi: 10.1128/jb.175.7.1891-1899.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Graham L. L., Beveridge T. J., Nanninga N. Periplasmic space and the concept of the periplasm. Trends Biochem Sci. 1991 Sep;16(9):328–329. doi: 10.1016/0968-0004(91)90135-i. [DOI] [PubMed] [Google Scholar]
  8. Hovmöller S., Sjögren A., Wang D. N. The structure of crystalline bacterial surface layers. Prog Biophys Mol Biol. 1988;51(2):131–163. doi: 10.1016/0079-6107(88)90012-0. [DOI] [PubMed] [Google Scholar]
  9. Jaenicke R., Welsch R., Sára M., Sleytr U. B. Stability and self-assembly of the S-layer protein of the cell wall of Bacillus stearothermophilus. Biol Chem Hoppe Seyler. 1985 Jul;366(7):663–670. doi: 10.1515/bchm3.1985.366.2.663. [DOI] [PubMed] [Google Scholar]
  10. Kern G., Schülke N., Schmid F. X., Jaenicke R. Stability, quaternary structure, and folding of internal, external, and core-glycosylated invertase from yeast. Protein Sci. 1992 Jan;1(1):120–131. doi: 10.1002/pro.5560010112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lacks S. A., Springhorn S. S. Renaturation of enzymes after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. J Biol Chem. 1980 Aug 10;255(15):7467–7473. [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Lupas A., Engelhardt H., Peters J., Santarius U., Volker S., Baumeister W. Domain structure of the Acetogenium kivui surface layer revealed by electron crystallography and sequence analysis. J Bacteriol. 1994 Mar;176(5):1224–1233. doi: 10.1128/jb.176.5.1224-1233.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Matuschek M., Burchhardt G., Sahm K., Bahl H. Pullulanase of Thermoanaerobacterium thermosulfurigenes EM1 (Clostridium thermosulfurogenes): molecular analysis of the gene, composite structure of the enzyme, and a common model for its attachment to the cell surface. J Bacteriol. 1994 Jun;176(11):3295–3302. doi: 10.1128/jb.176.11.3295-3302.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Messner P., Pum D., Sleytr U. B. Characterization of the ultrastructure and the self-assembly of the surface layer of Bacillus stearothermophilus strain NRS 2004/3a. J Ultrastruct Mol Struct Res. 1986 Oct-Dec;97(1-3):73–88. doi: 10.1016/s0889-1605(86)80008-8. [DOI] [PubMed] [Google Scholar]
  16. Messner P., Sleytr U. B. Crystalline bacterial cell-surface layers. Adv Microb Physiol. 1992;33:213–275. doi: 10.1016/s0065-2911(08)60218-0. [DOI] [PubMed] [Google Scholar]
  17. Pum D., Messner P., Sleytr U. B. Role of the S layer in morphogenesis and cell division of the archaebacterium Methanocorpusculum sinense. J Bacteriol. 1991 Nov;173(21):6865–6873. doi: 10.1128/jb.173.21.6865-6873.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pum D., Sára M., Sleytr U. B. Structure, surface charge, and self-assembly of the S-layer lattice from Bacillus coagulans E38-66. J Bacteriol. 1989 Oct;171(10):5296–5303. doi: 10.1128/jb.171.10.5296-5303.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Salamitou S., Lemaire M., Fujino T., Ohayon H., Gounon P., Béguin P., Aubert J. P. Subcellular localization of Clostridium thermocellum ORF3p, a protein carrying a receptor for the docking sequence borne by the catalytic components of the cellulosome. J Bacteriol. 1994 May;176(10):2828–2834. doi: 10.1128/jb.176.10.2828-2834.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Salamitou S., Raynaud O., Lemaire M., Coughlan M., Béguin P., Aubert J. P. Recognition specificity of the duplicated segments present in Clostridium thermocellum endoglucanase CelD and in the cellulosome-integrating protein CipA. J Bacteriol. 1994 May;176(10):2822–2827. doi: 10.1128/jb.176.10.2822-2827.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sleytr U. B., Messner P. Crystalline surface layers in procaryotes. J Bacteriol. 1988 Jul;170(7):2891–2897. doi: 10.1128/jb.170.7.2891-2897.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sleytr U. B., Messner P. Crystalline surface layers on bacteria. Annu Rev Microbiol. 1983;37:311–339. doi: 10.1146/annurev.mi.37.100183.001523. [DOI] [PubMed] [Google Scholar]
  23. Sleytr U. B., Messner P., Pum D., Sára M. Crystalline bacterial cell surface layers. Mol Microbiol. 1993 Dec;10(5):911–916. doi: 10.1111/j.1365-2958.1993.tb00962.x. [DOI] [PubMed] [Google Scholar]
  24. Sleytr U. B. Self-assembly of the hexagonally and tetragonally arranged subunits of bacterial surface layers and their reattachment to cell walls. J Ultrastruct Res. 1976 Jun;55(3):360–377. doi: 10.1016/s0022-5320(76)80093-7. [DOI] [PubMed] [Google Scholar]
  25. Specka U., Spreinat A., Antranikian G., Mayer F. Immunocytochemical Identification and Localization of Active and Inactive alpha-Amylase and Pullulanase in Cells of Clostridium thermosulfurogenes EM1. Appl Environ Microbiol. 1991 Apr;57(4):1062–1069. doi: 10.1128/aem.57.4.1062-1069.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sára M., Pum D., Küpcü S., Messner P., Sleytr U. B. Isolation of two physiologically induced variant strains of Bacillus stearothermophilus NRS 2004/3a and characterization of their S-layer lattices. J Bacteriol. 1994 Feb;176(3):848–860. doi: 10.1128/jb.176.3.848-860.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sára M., Pum D., Sleytr U. B. Permeability and charge-dependent adsorption properties of the S-layer lattice from Bacillus coagulans E38-66. J Bacteriol. 1992 Jun;174(11):3487–3493. doi: 10.1128/jb.174.11.3487-3493.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tummuru M. K., Blaser M. J. Characterization of the Campylobacter fetus sapA promoter: evidence that the sapA promoter is deleted in spontaneous mutant strains. J Bacteriol. 1992 Sep;174(18):5916–5922. doi: 10.1128/jb.174.18.5916-5922.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tummuru M. K., Blaser M. J. Rearrangement of sapA homologs with conserved and variable regions in Campylobacter fetus. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7265–7269. doi: 10.1073/pnas.90.15.7265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wang E., Garcia M. M., Blake M. S., Pei Z., Blaser M. J. Shift in S-layer protein expression responsible for antigenic variation in Campylobacter fetus. J Bacteriol. 1993 Aug;175(16):4979–4984. doi: 10.1128/jb.175.16.4979-4984.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wildhaber I., Baumeister W. The cell envelope of Thermoproteus tenax: three-dimensional structure of the surface layer and its role in shape maintenance. EMBO J. 1987 May;6(5):1475–1480. doi: 10.1002/j.1460-2075.1987.tb02389.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES