Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Mar;177(6):1461–1469. doi: 10.1128/jb.177.6.1461-1469.1995

The end of the cob operon: evidence that the last gene (cobT) catalyzes synthesis of the lower ligand of vitamin B12, dimethylbenzimidazole.

P Chen 1, M Ailion 1, N Weyand 1, J Roth 1
PMCID: PMC176760  PMID: 7883701

Abstract

The cob operon of Salmonella typhimurium includes 20 genes devoted to the synthesis of adenosyl-cobalamin (coenzyme B12). Mutants with lesions in the promoter-distal end of the operon synthesize vitamin B12 only if provided with 5,6-dimethylbenzimidazole (DMB), the lower ligand of vitamin B12. In the hope of identifying a gene(s) involved in synthesis of DMB, the DNA base sequence of the end of the operon has been determined; this completes the sequence of the cob operon. The cobT gene is the last gene in the operon. Four CobII (DMB-) mutations mapping to different deletion intervals of the CobII region were sequenced; all affect the cobT open reading frame. Both the CobT protein of S. typhimurium and its Pseudomonas homolog have been shown in vitro to catalyze the transfer of ribose phosphate from nicotinate mononucleotide to DMB. This reaction does not contribute to DMB synthesis but rather is the first step in joining DMB to the corrin ring compound cobinamide. Thus, the phenotype of Salmonella cobT mutants conflicts with the reported activity of the affected enzyme, while Pseudomonas mutants have the expected phenotype. J. R. Trzebiatowski, G. A. O'Toole, and J. C. Escalante Semerena have suggested (J. Bacteriol. 176:3568-3575, 1994) that S. typhimurium possesses a second phosphoribosyltransferase activity (CobB) that requires a high concentration of DMB for its activity. We support that suggestion and, in addition, provide evidence that the CobT protein catalyzes both the synthesis of DMB and transfer of ribose phosphate. Some cobT mutants appear defective only in DMB synthesis, since they grow on low levels of DMB and retain their CobII phenotype in the presence of a cobB mutation. Other mutants including those with deletions, appear defective in transferase, since they require a high level of DMB (to activate CobB) and, in combination with a cobB mutation, they eliminate the ability to join DMB and cobinamide. Immediately downstream of the cob operon is a gene (called ORF in this study) of unknown function whose mutants have no detected phenotype. Just counterclockwise of ORF is an asparagine tRNA gene (probably asnU). Farther counterclockwise, a serine tRNA gene (serU or supD) is weakly cotransducible with the cobT gene.

Full Text

The Full Text of this article is available as a PDF (303.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Battersby A. R. How nature builds the pigments of life: the conquest of vitamin B12. Science. 1994 Jun 10;264(5165):1551–1557. doi: 10.1126/science.8202709. [DOI] [PubMed] [Google Scholar]
  2. Bobik T. A., Ailion M., Roth J. R. A single regulatory gene integrates control of vitamin B12 synthesis and propanediol degradation. J Bacteriol. 1992 Apr;174(7):2253–2266. doi: 10.1128/jb.174.7.2253-2266.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brendel V., Trifonov E. N. A computer algorithm for testing potential prokaryotic terminators. Nucleic Acids Res. 1984 May 25;12(10):4411–4427. doi: 10.1093/nar/12.10.4411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cameron B., Blanche F., Rouyez M. C., Bisch D., Famechon A., Couder M., Cauchois L., Thibaut D., Debussche L., Crouzet J. Genetic analysis, nucleotide sequence, and products of two Pseudomonas denitrificans cob genes encoding nicotinate-nucleotide: dimethylbenzimidazole phosphoribosyltransferase and cobalamin (5'-phosphate) synthase. J Bacteriol. 1991 Oct;173(19):6066–6073. doi: 10.1128/jb.173.19.6066-6073.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chan R. K., Botstein D., Watanabe T., Ogata Y. Specialized transduction of tetracycline resistance by phage P22 in Salmonella typhimurium. II. Properties of a high-frequency-transducing lysate. Virology. 1972 Dec;50(3):883–898. doi: 10.1016/0042-6822(72)90442-4. [DOI] [PubMed] [Google Scholar]
  6. Chen P., Andersson D. I., Roth J. R. The control region of the pdu/cob regulon in Salmonella typhimurium. J Bacteriol. 1994 Sep;176(17):5474–5482. doi: 10.1128/jb.176.17.5474-5482.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Elliott T., Roth J. R. Characterization of Tn10d-Cam: a transposition-defective Tn10 specifying chloramphenicol resistance. Mol Gen Genet. 1988 Aug;213(2-3):332–338. doi: 10.1007/BF00339599. [DOI] [PubMed] [Google Scholar]
  9. Escalante-Semerena J. C., Johnson M. G., Roth J. R. The CobII and CobIII regions of the cobalamin (vitamin B12) biosynthetic operon of Salmonella typhimurium. J Bacteriol. 1992 Jan;174(1):24–29. doi: 10.1128/jb.174.1.24-29.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fournier M. J., Ozeki H. Structure and organization of the transfer ribonucleic acid genes of Escherichia coli K-12. Microbiol Rev. 1985 Dec;49(4):379–397. doi: 10.1128/mr.49.4.379-397.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grabau C., Roth J. R. A Salmonella typhimurium cobalamin-deficient mutant blocked in 1-amino-2-propanol synthesis. J Bacteriol. 1992 Apr;174(7):2138–2144. doi: 10.1128/jb.174.7.2138-2144.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Groenen M. A., Timmers E., van de Putte P. DNA sequences at the ends of the genome of bacteriophage Mu essential for transposition. Proc Natl Acad Sci U S A. 1985 Apr;82(7):2087–2091. doi: 10.1073/pnas.82.7.2087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hörig J. A., Renz P., Heckmann G. [5-15N]Riboflavin as precursor in the biosynthesis of the 5,6-dimethylbenzimidazole moiety of vitamin B12. A study by 1H and 15N magnetic resonance spectroscopy. J Biol Chem. 1978 Oct 25;253(20):7410–7414. [PubMed] [Google Scholar]
  14. Jeter R. M., Olivera B. M., Roth J. R. Salmonella typhimurium synthesizes cobalamin (vitamin B12) de novo under anaerobic growth conditions. J Bacteriol. 1984 Jul;159(1):206–213. doi: 10.1128/jb.159.1.206-213.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jeter R. M., Roth J. R. Cobalamin (vitamin B12) biosynthetic genes of Salmonella typhimurium. J Bacteriol. 1987 Jul;169(7):3189–3198. doi: 10.1128/jb.169.7.3189-3198.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Komine Y., Adachi T., Inokuchi H., Ozeki H. Genomic organization and physical mapping of the transfer RNA genes in Escherichia coli K12. J Mol Biol. 1990 Apr 20;212(4):579–598. doi: 10.1016/0022-2836(90)90224-A. [DOI] [PubMed] [Google Scholar]
  17. Miller K. J., McKinstry M. W., Hunt W. P., Nixon B. T. Identification of the diacylglycerol kinase structural gene of Rhizobium meliloti 1021. Mol Plant Microbe Interact. 1992 Sep-Oct;5(5):363–371. doi: 10.1094/mpmi-5-363. [DOI] [PubMed] [Google Scholar]
  18. O'Toole G. A., Rondon M. R., Escalante-Semerena J. C. Analysis of mutants of Salmonella typhimurium defective in the synthesis of the nucleotide loop of cobalamin. J Bacteriol. 1993 Jun;175(11):3317–3326. doi: 10.1128/jb.175.11.3317-3326.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. O'Toole G. A., Trzebiatowski J. R., Escalante-Semerena J. C. The cobC gene of Salmonella typhimurium codes for a novel phosphatase involved in the assembly of the nucleotide loop of cobalamin. J Biol Chem. 1994 Oct 21;269(42):26503–26511. [PubMed] [Google Scholar]
  20. Roth J. R., Lawrence J. G., Rubenfield M., Kieffer-Higgins S., Church G. M. Characterization of the cobalamin (vitamin B12) biosynthetic genes of Salmonella typhimurium. J Bacteriol. 1993 Jun;175(11):3303–3316. doi: 10.1128/jb.175.11.3303-3316.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sanderson K. E., Roth J. R. Linkage map of Salmonella typhimurium, edition VII. Microbiol Rev. 1988 Dec;52(4):485–532. doi: 10.1128/mr.52.4.485-532.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schmieger H. A method for detection of phage mutants with altered transducing ability. Mol Gen Genet. 1971;110(4):378–381. doi: 10.1007/BF00438281. [DOI] [PubMed] [Google Scholar]
  24. Schwacha A., Bender R. A. The nac (nitrogen assimilation control) gene from Klebsiella aerogenes. J Bacteriol. 1993 Apr;175(7):2107–2115. doi: 10.1128/jb.175.7.2107-2115.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Spencer J. B., Stolowich N. J., Roessner C. A., Scott A. I. The Escherichia coli cysG gene encodes the multifunctional protein, siroheme synthase. FEBS Lett. 1993 Nov 29;335(1):57–60. doi: 10.1016/0014-5793(93)80438-z. [DOI] [PubMed] [Google Scholar]
  26. Thorbjarnardóttir S., Uemura H., Dingermann T., Rafnar T., Thorsteinsdóttir S., Söll D., Eggertsson G. Escherichia coli supH suppressor: temperature-sensitive missense suppression caused by an anticodon change in tRNASer2. J Bacteriol. 1985 Jan;161(1):207–211. doi: 10.1128/jb.161.1.207-211.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Trzebiatowski J. R., O'Toole G. A., Escalante-Semerena J. C. The cobT gene of Salmonella typhimurium encodes the NaMN: 5,6-dimethylbenzimidazole phosphoribosyltransferase responsible for the synthesis of N1-(5-phospho-alpha-D-ribosyl)-5,6-dimethylbenzimidazole, an intermediate in the synthesis of the nucleotide loop of cobalamin. J Bacteriol. 1994 Jun;176(12):3568–3575. doi: 10.1128/jb.176.12.3568-3575.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. VOGEL H. J., BONNER D. M. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed] [Google Scholar]
  29. Way J. C., Davis M. A., Morisato D., Roberts D. E., Kleckner N. New Tn10 derivatives for transposon mutagenesis and for construction of lacZ operon fusions by transposition. Gene. 1984 Dec;32(3):369–379. doi: 10.1016/0378-1119(84)90012-x. [DOI] [PubMed] [Google Scholar]
  30. Whitfield H. J., Levine G. Isolation and characterization of a mutant of Salmonella typhimurium deficient in a major deoxyribonucleic acid polymerase activity. J Bacteriol. 1973 Oct;116(1):54–58. doi: 10.1128/jb.116.1.54-58.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES