Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Mar;177(6):1576–1584. doi: 10.1128/jb.177.6.1576-1584.1995

Imidazole acetol phosphate aminotransferase in Zymomonas mobilis: molecular genetic, biochemical, and evolutionary analyses.

W Gu 1, G Zhao 1, C Eddy 1, R A Jensen 1
PMCID: PMC176775  PMID: 7883715

Abstract

hisH encodes imidazole acetol phosphate (IAP) aminotransferase in Zymomonas mobilis and is located immediately upstream of tyrC, a gene which codes for cyclohexadienyl dehydrogenase. A plasmid containing hisH was able to complement an Escherichia coli histidine auxotroph which lacked the homologous aminotransferase. DNA sequencing of hisH revealed an open reading frame of 1,110 bp, encoding a protein of 40,631 Da. The cloned hisH product was purified from E. coli and estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to have a molecular mass of 40,000 Da. Since the native enzyme had a molecular mass of 85,000 Da as determined by gel filtration, the active enzyme species must be a homodimer. The purified enzyme was able to transaminate aromatic amino acids and histidine in addition to histidinol phosphate. The existence of a single protein having broad substrate specificity was consistent with the constant ratio of activities obtained with different substrates following a variety of physical treatments (such as freeze-thaw, temperature inactivation, and manipulation of pyridoxal 5'-phosphate content). The purified enzyme did not require addition of pyridoxal 5'-phosphate, but dependence upon this cofactor was demonstrated following resolution of the enzyme and cofactor by hydroxylamine treatment. Kinetic data showed the classic ping-pong mechanism expected for aminotransferases. Km values of 0.17, 3.39, and 43.48 mM for histidinol phosphate, tyrosine, and phenylalanine were obtained. The gene structure around hisH-tyrC suggested an operon organization. The hisH-tyrC cluster in Z. mobilis is reminiscent of the hisH-tyrA component of a complex operon in Bacillus subtilis, which includes the tryptophan operon and aroE. Multiple alignment of all aminotransferase sequences available in the database showed that within the class I superfamily of aminotransferases, IAP aminotransferases (family I beta) are closer to the I gamma family (e.g., rat tyrosine aminotransferase) than to the I alpha family (e.g., rat aspartate aminotransferase or E. coli AspC). Signature motifs which distinguish the IAP aminotransferase family were identified in the region of the active-site lysine and in the region of the interdomain interface.

Full Text

The Full Text of this article is available as a PDF (392.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babitzke P., Gollnick P., Yanofsky C. The mtrAB operon of Bacillus subtilis encodes GTP cyclohydrolase I (MtrA), an enzyme involved in folic acid biosynthesis, and MtrB, a regulator of tryptophan biosynthesis. J Bacteriol. 1992 Apr;174(7):2059–2064. doi: 10.1128/jb.174.7.2059-2064.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bialkowska-Hobrzanska H., Gilchrist C. A., Denhardt D. T. Escherichia coli rep gene: identification of the promoter and N terminus of the rep protein. J Bacteriol. 1985 Dec;164(3):1004–1010. doi: 10.1128/jb.164.3.1004-1010.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bonner C., Jensen R. Prephenate aminotransferase. Methods Enzymol. 1987;142:479–487. doi: 10.1016/s0076-6879(87)42059-4. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Conover R. K., Doolittle W. F. Characterization of a gene involved in histidine biosynthesis in Halobacterium (Haloferax) volcanii: isolation and rapid mapping by transformation of an auxotroph with cosmid DNA. J Bacteriol. 1990 Jun;172(6):3244–3249. doi: 10.1128/jb.172.6.3244-3249.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Duncan K., Coggins J. R. The serC-aro A operon of Escherichia coli. A mixed function operon encoding enzymes from two different amino acid biosynthetic pathways. Biochem J. 1986 Feb 15;234(1):49–57. doi: 10.1042/bj2340049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eddy C. K., Smith O. H., Noel K. D. Cosmid cloning of five Zymomonas trp genes by complementation of Escherichia coli and Pseudomonas putida trp mutants. J Bacteriol. 1988 Jul;170(7):3158–3163. doi: 10.1128/jb.170.7.3158-3163.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ford G. C., Eichele G., Jansonius J. N. Three-dimensional structure of a pyridoxal-phosphate-dependent enzyme, mitochondrial aspartate aminotransferase. Proc Natl Acad Sci U S A. 1980 May;77(5):2559–2563. doi: 10.1073/pnas.77.5.2559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gantt J. S., Larson R. J., Farnham M. W., Pathirana S. M., Miller S. S., Vance C. P. Aspartate aminotransferase in effective and ineffective alfalfa nodules : cloning of a cDNA and determination of enzyme activity, protein, and mRNA levels. Plant Physiol. 1992 Mar;98(3):868–878. doi: 10.1104/pp.98.3.868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Garrick-Silversmith L., Hartman P. E. Histidine-requiring mutants of Escherichia coli K12. Genetics. 1970 Oct;66(2):231–244. doi: 10.1093/genetics/66.2.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gelfand D. H., Steinberg R. A. Escherichia coli mutants deficient in the aspartate and aromatic amino acid aminotransferases. J Bacteriol. 1977 Apr;130(1):429–440. doi: 10.1128/jb.130.1.429-440.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hacking A. J., Hassall H. The purification and properties of L-histidine--2-oxoglutarate aminotransferase from Pseudomonas testosteroni. Biochem J. 1975 May;147(2):327–334. doi: 10.1042/bj1470327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Henner D. J., Band L., Flaggs G., Chen E. The organization and nucleotide sequence of the Bacillus subtilis hisH, tyrA and aroE genes. Gene. 1986;49(1):147–152. doi: 10.1016/0378-1119(86)90394-x. [DOI] [PubMed] [Google Scholar]
  15. Hoiseth S. K., Stocker B. A. Genes aroA and serC of Salmonella typhimurium constitute an operon. J Bacteriol. 1985 Jul;163(1):355–361. doi: 10.1128/jb.163.1.355-361.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jensen R. A., Calhoun D. H. Intracellular roles of microbial aminotransferases: overlap enzymes across different biochemical pathways. Crit Rev Microbiol. 1981;8(3):229–266. doi: 10.3109/10408418109085080. [DOI] [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Lam H. M., Winkler M. E. Characterization of the complex pdxH-tyrS operon of Escherichia coli K-12 and pleiotropic phenotypes caused by pdxH insertion mutations. J Bacteriol. 1992 Oct;174(19):6033–6045. doi: 10.1128/jb.174.19.6033-6045.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Limauro D., Avitabile A., Cappellano C., Puglia A. M., Bruni C. B. Cloning and characterization of the histidine biosynthetic gene cluster of Streptomyces coelicolor A3(2). Gene. 1990 May 31;90(1):31–41. doi: 10.1016/0378-1119(90)90436-u. [DOI] [PubMed] [Google Scholar]
  20. Mehta P. K., Hale T. I., Christen P. Evolutionary relationships among aminotransferases. Tyrosine aminotransferase, histidinol-phosphate aminotransferase, and aspartate aminotransferase are homologous proteins. Eur J Biochem. 1989 Dec 8;186(1-2):249–253. doi: 10.1111/j.1432-1033.1989.tb15202.x. [DOI] [PubMed] [Google Scholar]
  21. Nester E. W., Montoya A. L. An enzyme common to histidine and aromatic amino acid biosynthesis in Bacillus subtilis. J Bacteriol. 1976 May;126(2):699–705. doi: 10.1128/jb.126.2.699-705.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Orr M. D., Blakley R. L., Panagou D. Discontinuous buffer systems for analytical and preparative electrophoresis of enzymes on polyacrylamide gel. Anal Biochem. 1972 Jan;45(1):68–85. doi: 10.1016/0003-2697(72)90008-5. [DOI] [PubMed] [Google Scholar]
  23. Piggot P. J., Hoch J. A. Revised genetic linkage map of Bacillus subtilis. Microbiol Rev. 1985 Jun;49(2):158–179. doi: 10.1128/mr.49.2.158-179.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pond J. L., Eddy C. K., Mackenzie K. F., Conway T., Borecky D. J., Ingram L. O. Cloning, sequencing, and characterization of the principal acid phosphatase, the phoC+ product, from Zymomonas mobilis. J Bacteriol. 1989 Feb;171(2):767–774. doi: 10.1128/jb.171.2.767-774.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rechler M. M., Bruni C. B. Properties of a fused protein formed by genetic manipulation. Histidinol dehydrogenase-imidazolylacetol phosphate: L-glutamate aminotransferase. J Biol Chem. 1971 Mar 25;246(6):1806–1813. [PubMed] [Google Scholar]
  26. Roa B. B., Connolly D. M., Winkler M. E. Overlap between pdxA and ksgA in the complex pdxA-ksgA-apaG-apaH operon of Escherichia coli K-12. J Bacteriol. 1989 Sep;171(9):4767–4777. doi: 10.1128/jb.171.9.4767-4777.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Roth C. W., Nester E. W. Co-ordinate control of tryptophan, histidine and tyrosine enzyme synthesis in Bacillus subtilis. J Mol Biol. 1971 Dec 28;62(3):577–589. doi: 10.1016/0022-2836(71)90157-4. [DOI] [PubMed] [Google Scholar]
  28. Sung M. H., Tanizawa K., Tanaka H., Kuramitsu S., Kagamiyama H., Soda K. Purification and characterization of thermostable aspartate aminotransferase from a thermophilic Bacillus species. J Bacteriol. 1990 Mar;172(3):1345–1351. doi: 10.1128/jb.172.3.1345-1351.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Troup B., Jahn M., Hungerer C., Jahn D. Isolation of the hemF operon containing the gene for the Escherichia coli aerobic coproporphyrinogen III oxidase by in vivo complementation of a yeast HEM13 mutant. J Bacteriol. 1994 Feb;176(3):673–680. doi: 10.1128/jb.176.3.673-680.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Weigent D. A., Nester E. W. Purification and properties of two aromatic aminotransferases in Bacillus subtilis. J Biol Chem. 1976 Nov 25;251(22):6974–6980. [PubMed] [Google Scholar]
  31. Weigent D. A., Nester E. W. Regulation of histidinol phosphate aminotransferase synthesis by tryptophan in Bacillus subtilis. J Bacteriol. 1976 Oct;128(1):202–211. doi: 10.1128/jb.128.1.202-211.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Whitaker R. J., Gaines C. G., Jensen R. A. A multispecific quintet of aromatic aminotransferases that overlap different biochemical pathways in Pseudomonas aeruginosa. J Biol Chem. 1982 Nov 25;257(22):13550–13556. [PubMed] [Google Scholar]
  33. Xu K., Elliott T. An oxygen-dependent coproporphyrinogen oxidase encoded by the hemF gene of Salmonella typhimurium. J Bacteriol. 1993 Aug;175(16):4990–4999. doi: 10.1128/jb.175.16.4990-4999.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Zhao G., Xia T., Ingram L. O., Jensen R. A. An allosterically insensitive class of cyclohexadienyl dehydrogenase from Zymomonas mobilis. Eur J Biochem. 1993 Feb 15;212(1):157–165. doi: 10.1111/j.1432-1033.1993.tb17646.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES