Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Mar;177(6):1620–1623. doi: 10.1128/jb.177.6.1620-1623.1995

A mutant phosphoenolpyruvate carboxykinase in Escherichia coli conferring oxaloacetate decarboxylase activity.

S Y Hou 1, Y P Chao 1, J C Liao 1
PMCID: PMC176781  PMID: 7883719

Abstract

The phosphoenolpyruvate carboxykinase in Escherichia coli (encoded by pck) catalyzes the conversion from oxaloacetate (OAA) to phosphoenolpyruvate under gluconeogenic conditions. We report here the characterization of two mutant alleles, pck-51 and pck-53, both of which are point mutations leading to single amino acid changes (D to N at position 268 and G to S at position 284, respectively). Pck51 is an altered-activity mutant that catalyzes the conversion from OAA to pyruvate (OAA decarboxylase activity). This new activity was not detected from the wild-type Pck, and it complements the pck null mutation only in a pps+ background. Pck53 is a reduced-activity mutant that complements the pck null mutation in a strain-dependent fashion.

Full Text

The Full Text of this article is available as a PDF (249.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CANNATA J. J., STOPPANI A. O. Phosphopyruvate carboxylase from Baker's yeast. III. The mechanism of oxalocetate decarboxylation. J Biol Chem. 1963 Jun;238:1919–1927. [PubMed] [Google Scholar]
  2. Chao Y. P., Liao J. C. Alteration of growth yield by overexpression of phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase in Escherichia coli. Appl Environ Microbiol. 1993 Dec;59(12):4261–4265. doi: 10.1128/aem.59.12.4261-4265.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chao Y. P., Patnaik R., Roof W. D., Young R. F., Liao J. C. Control of gluconeogenic growth by pps and pck in Escherichia coli. J Bacteriol. 1993 Nov;175(21):6939–6944. doi: 10.1128/jb.175.21.6939-6944.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Degnen G. E., Cox E. C. Conditional mutator gene in Escherichia coli: isolation, mapping, and effector studies. J Bacteriol. 1974 Feb;117(2):477–487. doi: 10.1128/jb.117.2.477-487.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fürste J. P., Pansegrau W., Frank R., Blöcker H., Scholz P., Bagdasarian M., Lanka E. Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector. Gene. 1986;48(1):119–131. doi: 10.1016/0378-1119(86)90358-6. [DOI] [PubMed] [Google Scholar]
  6. Goldie A. H., Sanwal B. D. Allosteric control by calcium and mechanism of desensitization of phosphoenolpyruvate carboxykinase of Escherichia coli. J Biol Chem. 1980 Feb 25;255(4):1399–1405. [PubMed] [Google Scholar]
  7. Goldie A. H., Sanwal B. D. Genetic and physiological characterization of Escherichia coli mutants deficient in phosphoenolpyruvate carboxykinase activity. J Bacteriol. 1980 Mar;141(3):1115–1121. doi: 10.1128/jb.141.3.1115-1121.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goldie H., Medina V. Physical and genetic analysis of the phosphoenolpyruvate carboxykinase (pckA) locus from Escherichia coli K12. Mol Gen Genet. 1990 Jan;220(2):191–196. doi: 10.1007/BF00260481. [DOI] [PubMed] [Google Scholar]
  9. Goldie H. Regulation of transcription of the Escherichia coli phosphoenolpyruvate carboxykinase locus: studies with pck-lacZ operon fusions. J Bacteriol. 1984 Sep;159(3):832–836. doi: 10.1128/jb.159.3.832-836.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hansen E. J., Juni E. Isolation of mutants of Escherichia coli lacking NAD- and NADP-linked malic. Biochem Biophys Res Commun. 1975 Jul 22;65(2):559–566. doi: 10.1016/s0006-291x(75)80183-5. [DOI] [PubMed] [Google Scholar]
  11. Loeber G., Infante A. A., Maurer-Fogy I., Krystek E., Dworkin M. B. Human NAD(+)-dependent mitochondrial malic enzyme. cDNA cloning, primary structure, and expression in Escherichia coli. J Biol Chem. 1991 Feb 15;266(5):3016–3021. [PubMed] [Google Scholar]
  12. Medina V., Pontarollo R., Glaeske D., Tabel H., Goldie H. Sequence of the pckA gene of Escherichia coli K-12: relevance to genetic and allosteric regulation and homology of E. coli phosphoenolpyruvate carboxykinase with the enzymes from Trypanosoma brucei and Saccharomyces cerevisiae. J Bacteriol. 1990 Dec;172(12):7151–7156. doi: 10.1128/jb.172.12.7151-7156.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Noce P. S., Utter M. F. Decarboxylation of oxalacetate to pyruvate by purified avian liver phosphoenolpyruvate carboxykinase. J Biol Chem. 1975 Dec 10;250(23):9099–9105. [PubMed] [Google Scholar]
  14. Osterås M., Finan T. M., Stanley J. Site-directed mutagenesis and DNA sequence of pckA of Rhizobium NGR234, encoding phosphoenolpyruvate carboxykinase: gluconeogenesis and host-dependent symbiotic phenotype. Mol Gen Genet. 1991 Nov;230(1-2):257–269. doi: 10.1007/BF00290676. [DOI] [PubMed] [Google Scholar]
  15. Parsons M., Smith J. M. Trypanosome glycosomal protein P60 is homologous to phosphoenolpyruvate carboxykinase (ATP). Nucleic Acids Res. 1989 Aug 11;17(15):6411–6411. doi: 10.1093/nar/17.15.6411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Patnaik R., Liao J. C. Engineering of Escherichia coli central metabolism for aromatic metabolite production with near theoretical yield. Appl Environ Microbiol. 1994 Nov;60(11):3903–3908. doi: 10.1128/aem.60.11.3903-3908.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Stern J. R. Oxalacetate decarboxylase of Aerobacter aerogenes. I. Inhibition by avidin and requirement for sodium ion. Biochemistry. 1967 Nov;6(11):3545–3551. doi: 10.1021/bi00863a028. [DOI] [PubMed] [Google Scholar]
  18. Stucka R., Valdés-Hevia M. D., Gancedo C., Schwarzlose C., Feldmann H. Nucleotide sequence of the phosphoenolpyruvate carboxykinase gene from Saccharomyces cerevisiae. Nucleic Acids Res. 1988 Nov 25;16(22):10926–10926. doi: 10.1093/nar/16.22.10926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Woehlke G., Wifling K., Dimroth P. Sequence of the sodium ion pump oxaloacetate decarboxylase from Salmonella typhimurium. J Biol Chem. 1992 Nov 15;267(32):22798–22803. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES