Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Apr;177(7):1751–1759. doi: 10.1128/jb.177.7.1751-1759.1995

Aspartate transcarbamoylase genes of Pseudomonas putida: requirement for an inactive dihydroorotase for assembly into the dodecameric holoenzyme.

M J Schurr 1, J F Vickrey 1, A P Kumar 1, A L Campbell 1, R Cunin 1, R C Benjamin 1, M S Shanley 1, G A O'Donovan 1
PMCID: PMC176802  PMID: 7896697

Abstract

The nucleotide sequences of the genes encoding the enzyme aspartate transcarbamoylase (ATCase) from Pseudomonas putida have been determined. Our results confirm that the P. putida ATCase is a dodecameric protein composed of two types of polypeptide chains translated coordinately from overlapping genes. The P. putida ATCase does not possess dissociable regulatory and catalytic functions but instead apparently contains the regulatory nucleotide binding site within a unique N-terminal extension of the pyrB-encoded subunit. The first gene, pyrB, is 1,005 bp long and encodes the 334-amino-acid, 36.4-kDa catalytic subunit of the enzyme. The second gene is 1,275 bp long and encodes a 424-residue polypeptide which bears significant homology to dihydroorotase (DHOase) from other organisms. Despite the homology of the overlapping gene to known DHOases, this 44.2-kDa polypeptide is not considered to be the functional product of the pyrC gene in P. putida, as DHOase activity is distinct from the ATCase complex. Moreover, the 44.2-kDa polypeptide lacks specific histidyl residues thought to be critical for DHOase enzymatic function. The pyrC-like gene (henceforth designated pyrC') does not complement Escherichia coli pyrC auxotrophs, while the cloned pyrB gene does complement pyrB auxotrophs. The proposed function for the vestigial DHOase is to maintain ATCase activity by conserving the dodecameric assembly of the native enzyme. This unique assembly of six active pyrB polypeptides coupled with six inactive pyrC' polypeptides has not been seen previously for ATCase but is reminiscent of the fused trifunctional CAD enzyme of eukaryotes.

Full Text

The Full Text of this article is available as a PDF (886.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adair L. B., Jones M. E. Purification and characteristics of aspartate transcarbamylase from Pseudomonas fluorescens. J Biol Chem. 1972 Apr 25;247(8):2308–2315. [PubMed] [Google Scholar]
  2. BERTANI G. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol. 1951 Sep;62(3):293–300. doi: 10.1128/jb.62.3.293-300.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beck D., Kedzie K. M., Wild J. R. Comparison of the aspartate transcarbamoylases from Serratia marcescens and Escherichia coli. J Biol Chem. 1989 Oct 5;264(28):16629–16637. [PubMed] [Google Scholar]
  4. Bergh S. T., Evans D. R. Subunit structure of a class A aspartate transcarbamoylase from Pseudomonas fluorescens. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9818–9822. doi: 10.1073/pnas.90.21.9818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bethell M. R., Jones M. E. Molecular size and feedback-regulation characteristics of bacterial asartate transcarbamulases. Arch Biochem Biophys. 1969 Nov;134(2):352–365. doi: 10.1016/0003-9861(69)90294-x. [DOI] [PubMed] [Google Scholar]
  6. COHEN-BAZIRE G., SISTROM W. R., STANIER R. Y. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Physiol. 1957 Feb;49(1):25–68. doi: 10.1002/jcp.1030490104. [DOI] [PubMed] [Google Scholar]
  7. Chu C. P., West T. P. Pyrimidine biosynthetic pathway of Pseudomonas fluorescens. J Gen Microbiol. 1990 May;136(5):875–880. doi: 10.1099/00221287-136-5-875. [DOI] [PubMed] [Google Scholar]
  8. Condon S., Collins J. K., O'donovan G. A. Regulation of arginine and pyrimidine biosynthesis in Pseudomonas putida. J Gen Microbiol. 1976 Feb;92(2):375–383. doi: 10.1099/00221287-92-2-375. [DOI] [PubMed] [Google Scholar]
  9. Davidson J. N., Kern C. B. Revision in sequence of CAD aspartate transcarbamylase domain of Drosophila. J Mol Biol. 1994 Oct 21;243(2):364–366. doi: 10.1006/jmbi.1994.1663. [DOI] [PubMed] [Google Scholar]
  10. Denis-Duphil M. Pyrimidine biosynthesis in Saccharomyces cerevisiae: the ura2 cluster gene, its multifunctional enzyme product, and other structural or regulatory genes involved in de novo UMP synthesis. Biochem Cell Biol. 1989 Sep;67(9):612–631. doi: 10.1139/o89-094. [DOI] [PubMed] [Google Scholar]
  11. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Faure M., Camonis J. H., Jacquet M. Molecular characterization of a Dictyostelium discoideum gene encoding a multifunctional enzyme of the pyrimidine pathway. Eur J Biochem. 1989 Feb 1;179(2):345–358. doi: 10.1111/j.1432-1033.1989.tb14560.x. [DOI] [PubMed] [Google Scholar]
  13. GERHART J. C., PARDEE A. B. The enzymology of control by feedback inhibition. J Biol Chem. 1962 Mar;237:891–896. [PubMed] [Google Scholar]
  14. Ghim S. Y., Neuhard J. The pyrimidine biosynthesis operon of the thermophile Bacillus caldolyticus includes genes for uracil phosphoribosyltransferase and uracil permease. J Bacteriol. 1994 Jun;176(12):3698–3707. doi: 10.1128/jb.176.12.3698-3707.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Guyonvarch A., Nguyen-Juilleret M., Hubert J. C., Lacroute F. Structure of the Saccharomyces cerevisiae URA4 gene encoding dihydroorotase. Mol Gen Genet. 1988 Apr;212(1):134–141. doi: 10.1007/BF00322456. [DOI] [PubMed] [Google Scholar]
  16. Hoover T. A., Roof W. D., Foltermann K. F., O'Donovan G. A., Bencini D. A., Wild J. R. Nucleotide sequence of the structural gene (pyrB) that encodes the catalytic polypeptide of aspartate transcarbamoylase of Escherichia coli. Proc Natl Acad Sci U S A. 1983 May;80(9):2462–2466. doi: 10.1073/pnas.80.9.2462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Huff J. P., Grant B. J., Penning C. A., Sullivan K. F. Optimization of routine transformation of Escherichia coli with plasmid DNA. Biotechniques. 1990 Nov;9(5):570-2, 574, 576-7. [PubMed] [Google Scholar]
  18. Isaac J. H., Holloway B. W. Control of pyrimidine biosynthesis in Pseudomonas aeruginosa. J Bacteriol. 1968 Nov;96(5):1732–1741. doi: 10.1128/jb.96.5.1732-1741.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jones M. E. Pyrimidine nucleotide biosynthesis in animals: genes, enzymes, and regulation of UMP biosynthesis. Annu Rev Biochem. 1980;49:253–279. doi: 10.1146/annurev.bi.49.070180.001345. [DOI] [PubMed] [Google Scholar]
  20. Lerner C. G., Switzer R. L. Cloning and structure of the Bacillus subtilis aspartate transcarbamylase gene (pyrB). J Biol Chem. 1986 Aug 25;261(24):11156–11165. [PubMed] [Google Scholar]
  21. Michaels G., Kelln R. A., Nargang F. E. Cloning, nucleotide sequence and expression of the pyrBI operon of Salmonella typhimurium LT2. Eur J Biochem. 1987 Jul 1;166(1):55–61. doi: 10.1111/j.1432-1033.1987.tb13483.x. [DOI] [PubMed] [Google Scholar]
  22. Nagy M., Le Gouar M., Potier S., Souciet J. L., Hervé G. The primary structure of the aspartate transcarbamylase region of the URA2 gene product in Saccharomyces cerevisiae. Features involved in activity and nuclear localization. J Biol Chem. 1989 May 15;264(14):8366–8374. [PubMed] [Google Scholar]
  23. Neuhard J., Kelln R. A., Stauning E. Cloning and structural characterization of the Salmonella typhimurium pyrC gene encoding dihydroorotase. Eur J Biochem. 1986 Jun 2;157(2):335–342. doi: 10.1111/j.1432-1033.1986.tb09673.x. [DOI] [PubMed] [Google Scholar]
  24. Ornston L. N., Stanier R. Y. The conversion of catechol and protocatechuate to beta-ketoadipate by Pseudomonas putida. J Biol Chem. 1966 Aug 25;241(16):3776–3786. [PubMed] [Google Scholar]
  25. Pauza C. D., Karels M. J., Navre M., Schachman H. K. Genes encoding Escherichia coli aspartate transcarbamoylase: the pyrB-pyrI operon. Proc Natl Acad Sci U S A. 1982 Jul;79(13):4020–4024. doi: 10.1073/pnas.79.13.4020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Prescott L. M., Jones M. E. Modified methods for the determination of carbamyl aspartate. Anal Biochem. 1969 Dec;32(3):408–419. doi: 10.1016/s0003-2697(69)80008-4. [DOI] [PubMed] [Google Scholar]
  27. Quinn C. L., Stephenson B. T., Switzer R. L. Functional organization and nucleotide sequence of the Bacillus subtilis pyrimidine biosynthetic operon. J Biol Chem. 1991 May 15;266(14):9113–9127. [PubMed] [Google Scholar]
  28. Roof W. D., Foltermann K. F., Wild J. R. The organization and regulation of the pyrBI operon in E. coli includes a rho-independent attenuator sequence. Mol Gen Genet. 1982;187(3):391–400. doi: 10.1007/BF00332617. [DOI] [PubMed] [Google Scholar]
  29. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Shepherdson M., McPhail D. Purification of aspartate transcarbamoylase from Pseudomonas syringae. FEMS Microbiol Lett. 1993 Dec 1;114(2):201–205. doi: 10.1111/j.1574-6968.1993.tb06574.x. [DOI] [PubMed] [Google Scholar]
  31. Shigesada K., Stark G. R., Maley J. A., Niswander L. A., Davidson J. N. Construction of a cDNA to the hamster CAD gene and its application toward defining the domain for aspartate transcarbamylase. Mol Cell Biol. 1985 Jul;5(7):1735–1742. doi: 10.1128/mcb.5.7.1735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Simmer J. P., Kelly R. E., Rinker A. G., Jr, Zimmermann B. H., Scully J. L., Kim H., Evans D. R. Mammalian dihydroorotase: nucleotide sequence, peptide sequences, and evolution of the dihydroorotase domain of the multifunctional protein CAD. Proc Natl Acad Sci U S A. 1990 Jan;87(1):174–178. doi: 10.1073/pnas.87.1.174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Simmer J. P., Kelly R. E., Scully J. L., Grayson D. R., Rinker A. G., Jr, Bergh S. T., Evans D. R. Mammalian aspartate transcarbamylase (ATCase): sequence of the ATCase domain and interdomain linker in the CAD multifunctional polypeptide and properties of the isolated domain. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4382–4386. doi: 10.1073/pnas.86.12.4382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Souciet J. L., Nagy M., Le Gouar M., Lacroute F., Potier S. Organization of the yeast URA2 gene: identification of a defective dihydroorotase-like domain in the multifunctional carbamoylphosphate synthetase-aspartate transcarbamylase complex. Gene. 1989 Jun 30;79(1):59–70. doi: 10.1016/0378-1119(89)90092-9. [DOI] [PubMed] [Google Scholar]
  35. Tabor S., Richardson C. C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1074–1078. doi: 10.1073/pnas.82.4.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Weber K. New structural model of E. coli aspartate transcarbamylase and the amino-acid sequence of the regulatory polypeptide chain. Nature. 1968 Jun 22;218(5147):1116–1119. doi: 10.1038/2181116a0. [DOI] [PubMed] [Google Scholar]
  37. Wild J. R., Foltermann K. F., O'Donovan G. A. Regulatory divergence of aspartate transcarbamoylases within the enterobacteriaceae. Arch Biochem Biophys. 1980 May;201(2):506–517. doi: 10.1016/0003-9861(80)90539-1. [DOI] [PubMed] [Google Scholar]
  38. Wild J. R., Wales M. E. Molecular evolution and genetic engineering of protein domains involving aspartate transcarbamoylase. Annu Rev Microbiol. 1990;44:193–218. doi: 10.1146/annurev.mi.44.100190.001205. [DOI] [PubMed] [Google Scholar]
  39. Wilson H. R., Chan P. T., Turnbough C. L., Jr Nucleotide sequence and expression of the pyrC gene of Escherichia coli K-12. J Bacteriol. 1987 Jul;169(7):3051–3058. doi: 10.1128/jb.169.7.3051-3058.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Zhou C., Yang Y., Jong A. Y. Mini-prep in ten minutes. Biotechniques. 1990 Feb;8(2):172–173. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES