Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Apr;177(7):1788–1796. doi: 10.1128/jb.177.7.1788-1796.1995

Genomic organization of the Klebsiella pneumoniae cps region responsible for serotype K2 capsular polysaccharide synthesis in the virulent strain Chedid.

Y Arakawa 1, R Wacharotayankun 1, T Nagatsuka 1, H Ito 1, N Kato 1, M Ohta 1
PMCID: PMC176807  PMID: 7896702

Abstract

The genomic organization of the chromosomal cps region that is responsible for capsular polysaccharide synthesis in Klebsiella pneumoniae Chedid (O1:K2) was investigated. Deletion analyses and Southern hybridization studies suggested that the central region of the cloned 29-kb BamHI fragment is indispensable for K2 capsular polysaccharide synthesis. The 24,329-bp nucleotide sequence of the Klebsiella cps region was determined and deposited in the EMBL and GenBank databases through DDBJ and assigned accession number D21242. Nineteen possible open reading frames (ORFs) were identified in the sequenced area. Among them, 13 ORFs are very close to each other. Six of the 19 ORFs show considerable nucleotide sequence similarities to Salmonella typhimurium cpsG, cpsB, rfbP, and orf2.8, Escherichia coli gnd, and Haemophilus influenzae bexD, respectively. Moreover, the deduced amino acid sequence of the ORF10 product demonstrated a highly hydrophobic profile and showed putative membrane topology similarity to Rickettsia prowazekii ATP/ADP translocase. Nucleotide sequence similar to the sigma 54-dependent promoter, as well as the usual -35 and -10 sequences, were identified just upstream of ORF3, which is the first ORF in the polycistronic structure. Furthermore, a sequence (GGGCGGTAGCGT) found just downstream of the sigma 54-dependent promoter-like sequence was generally conserved among gene clusters implicated in cell surface polysaccharide synthesis, such as Salmonella rfb and viaB and E. coli kpsMT and rfaQPG. A possible transcriptional terminator with a hairpin loop structure found just downstream of ORF15 that is a homolog of E. coli gnd. K2 capsular polsaccharide biosynthesis in E. coli K-12 depends on cpsB (mannose-1-phosphate guanyltransferase gene), and Klebsiella cpsB, found in the downstream region of the polycistronic structure, was able to complement cpsB of E. coli. Results of transposon insertion and promoter-cloning analyses were consistent with the results of nucleotide sequence analysis.

Full Text

The Full Text of this article is available as a PDF (447.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arakawa Y., Ohta M., Wacharotayankun R., Mori M., Kido N., Ito H., Komatsu T., Sugiyama T., Kato N. Biosynthesis of Klebsiella K2 capsular polysaccharide in Escherichia coli HB101 requires the functions of rmpA and the chromosomal cps gene cluster of the virulent strain Klebsiella pneumoniae Chedid (O1:K2). Infect Immun. 1991 Jun;59(6):2043–2050. doi: 10.1128/iai.59.6.2043-2050.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boulnois G. J., Roberts I. S., Hodge R., Hardy K. R., Jann K. B., Timmis K. N. Analysis of the K1 capsule biosynthesis genes of Escherichia coli: definition of three functional regions for capsule production. Mol Gen Genet. 1987 Jun;208(1-2):242–246. doi: 10.1007/BF00330449. [DOI] [PubMed] [Google Scholar]
  3. Brill J. A., Quinlan-Walshe C., Gottesman S. Fine-structure mapping and identification of two regulators of capsule synthesis in Escherichia coli K-12. J Bacteriol. 1988 Jun;170(6):2599–2611. doi: 10.1128/jb.170.6.2599-2611.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brosius J. Plasmid vectors for the selection of promoters. Gene. 1984 Feb;27(2):151–160. doi: 10.1016/0378-1119(84)90136-7. [DOI] [PubMed] [Google Scholar]
  5. Brown P. K., Romana L. K., Reeves P. R. Molecular analysis of the rfb gene cluster of Salmonella serovar muenchen (strain M67): the genetic basis of the polymorphism between groups C2 and B. Mol Microbiol. 1992 May;6(10):1385–1394. doi: 10.1111/j.1365-2958.1992.tb00859.x. [DOI] [PubMed] [Google Scholar]
  6. Cryz S. J., Jr, Mortimer P. M., Mansfield V., Germanier R. Seroepidemiology of Klebsiella bacteremic isolates and implications for vaccine development. J Clin Microbiol. 1986 Apr;23(4):687–690. doi: 10.1128/jcm.23.4.687-690.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Domenico P., Diedrich D. L., Straus D. C. Extracellular polysaccharide production by Klebsiella pneumoniae and its relationship to virulence. Can J Microbiol. 1985 May;31(5):472–478. doi: 10.1139/m85-088. [DOI] [PubMed] [Google Scholar]
  8. Edmondson A. S., Cooke E. M. The production of antisera to the Klebsiella capsular antigens. J Appl Bacteriol. 1979 Jun;46(3):579–584. doi: 10.1111/j.1365-2672.1979.tb00858.x. [DOI] [PubMed] [Google Scholar]
  9. Howard C. J., Glynn A. A. The virulence for mice of strains of Escherichia coli related to the effects of K antigens on their resistance to phagocytosis and killing by complement. Immunology. 1971 May;20(5):767–777. [PMC free article] [PubMed] [Google Scholar]
  10. Jiang X. M., Neal B., Santiago F., Lee S. J., Romana L. K., Reeves P. R. Structure and sequence of the rfb (O antigen) gene cluster of Salmonella serovar typhimurium (strain LT2). Mol Microbiol. 1991 Mar;5(3):695–713. doi: 10.1111/j.1365-2958.1991.tb00741.x. [DOI] [PubMed] [Google Scholar]
  11. Kiseleva B. S., Krasnogolovets V. N. Rol' Klebsiella pneumoniae v étiologii bakterial'nogo sepsisa. Zh Mikrobiol Epidemiol Immunobiol. 1983 Feb;(2):20–25. [PubMed] [Google Scholar]
  12. Kroll J. S., Hopkins I., Moxon E. R. Capsule loss in H. influenzae type b occurs by recombination-mediated disruption of a gene essential for polysaccharide export. Cell. 1988 May 6;53(3):347–356. doi: 10.1016/0092-8674(88)90155-9. [DOI] [PubMed] [Google Scholar]
  13. Kroll J. S., Loynds B., Brophy L. N., Moxon E. R. The bex locus in encapsulated Haemophilus influenzae: a chromosomal region involved in capsule polysaccharide export. Mol Microbiol. 1990 Nov;4(11):1853–1862. doi: 10.1111/j.1365-2958.1990.tb02034.x. [DOI] [PubMed] [Google Scholar]
  14. Kröncke K. D., Boulnois G., Roberts I., Bitter-Suermann D., Golecki J. R., Jann B., Jann K. Expression of the Escherichia coli K5 capsular antigen: immunoelectron microscopic and biochemical studies with recombinant E. coli. J Bacteriol. 1990 Feb;172(2):1085–1091. doi: 10.1128/jb.172.2.1085-1091.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Laakso D. H., Homonylo M. K., Wilmot S. J., Whitfield C. Transfer and expression of the genetic determinants for O and K antigen synthesis in Escherichia coli O9:K(A)30 and Klebsiella sp. O1:K20, in Escherichia coli K12. Can J Microbiol. 1988 Aug;34(8):987–992. doi: 10.1139/m88-173. [DOI] [PubMed] [Google Scholar]
  16. Lee S. J., Romana L. K., Reeves P. R. Sequence and structural analysis of the rfb (O antigen) gene cluster from a group C1 Salmonella enterica strain. J Gen Microbiol. 1992 Sep;138(9):1843–1855. doi: 10.1099/00221287-138-9-1843. [DOI] [PubMed] [Google Scholar]
  17. Matsumoto H., Tazaki T. Genetic mapping of aro, pyr, and pur markers in Klebsiella pneumoniae. Jpn J Microbiol. 1971 Jan;15(1):11–20. [PubMed] [Google Scholar]
  18. Mizuta K., Ohta M., Mori M., Hasegawa T., Nakashima I., Kato N. Virulence for mice of Klebsiella strains belonging to the O1 group: relationship to their capsular (K) types. Infect Immun. 1983 Apr;40(1):56–61. doi: 10.1128/iai.40.1.56-61.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Morett E., Buck M. In vivo studies on the interaction of RNA polymerase-sigma 54 with the Klebsiella pneumoniae and Rhizobium meliloti nifH promoters. The role of NifA in the formation of an open promoter complex. J Mol Biol. 1989 Nov 5;210(1):65–77. doi: 10.1016/0022-2836(89)90291-x. [DOI] [PubMed] [Google Scholar]
  20. Mori M., Ohta M., Agata N., Kido N., Arakawa Y., Ito H., Komatsu T., Kato N. Identification of species and capsular types of Klebsiella clinical isolates, with special reference to Klebsiella planticola. Microbiol Immunol. 1989;33(11):887–895. doi: 10.1111/j.1348-0421.1989.tb00976.x. [DOI] [PubMed] [Google Scholar]
  21. Orskov F., Sharma V., Orskov I. Influence of growth temperature on the development of Escherichia coli polysaccharide K antigens. J Gen Microbiol. 1984 Oct;130(10):2681–2684. doi: 10.1099/00221287-130-10-2681. [DOI] [PubMed] [Google Scholar]
  22. Parker C. T., Pradel E., Schnaitman C. A. Identification and sequences of the lipopolysaccharide core biosynthetic genes rfaQ, rfaP, and rfaG of Escherichia coli K-12. J Bacteriol. 1992 Feb;174(3):930–934. doi: 10.1128/jb.174.3.930-934.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pavelka M. S., Jr, Wright L. F., Silver R. P. Identification of two genes, kpsM and kpsT, in region 3 of the polysialic acid gene cluster of Escherichia coli K1. J Bacteriol. 1991 Aug;173(15):4603–4610. doi: 10.1128/jb.173.15.4603-4610.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Peterson P. K., Quie P. G. Bacterial surface components and the pathogenesis of infectious diseases. Annu Rev Med. 1981;32:29–43. doi: 10.1146/annurev.me.32.020181.000333. [DOI] [PubMed] [Google Scholar]
  25. Plano G. V., Winkler H. H. Identification and initial topological analysis of the Rickettsia prowazekii ATP/ADP translocase. J Bacteriol. 1991 Jun;173(11):3389–3396. doi: 10.1128/jb.173.11.3389-3396.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sasakawa C., Yoshikawa M. A series of Tn5 variants with various drug-resistance markers and suicide vector for transposon mutagenesis. Gene. 1987;56(2-3):283–288. doi: 10.1016/0378-1119(87)90145-4. [DOI] [PubMed] [Google Scholar]
  27. Simoons-Smit A. M., Verweij-van Vught A. M., MacLaren D. M. The role of K antigens as virulence factors in Klebsiella. J Med Microbiol. 1986 Mar;21(2):133–137. doi: 10.1099/00222615-21-2-133. [DOI] [PubMed] [Google Scholar]
  28. Smith A. N., Boulnois G. J., Roberts I. S. Molecular analysis of the Escherichia coli K5 kps locus: identification and characterization of an inner-membrane capsular polysaccharide transport system. Mol Microbiol. 1990 Nov;4(11):1863–1869. doi: 10.1111/j.1365-2958.1990.tb02035.x. [DOI] [PubMed] [Google Scholar]
  29. Stachel S. E., An G., Flores C., Nester E. W. A Tn3 lacZ transposon for the random generation of beta-galactosidase gene fusions: application to the analysis of gene expression in Agrobacterium. EMBO J. 1985 Apr;4(4):891–898. doi: 10.1002/j.1460-2075.1985.tb03715.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Stevenson G., Lee S. J., Romana L. K., Reeves P. R. The cps gene cluster of Salmonella strain LT2 includes a second mannose pathway: sequence of two genes and relationship to genes in the rfb gene cluster. Mol Gen Genet. 1991 Jun;227(2):173–180. doi: 10.1007/BF00259668. [DOI] [PubMed] [Google Scholar]
  31. Stout V., Gottesman S. RcsB and RcsC: a two-component regulator of capsule synthesis in Escherichia coli. J Bacteriol. 1990 Feb;172(2):659–669. doi: 10.1128/jb.172.2.659-669.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sugiyama T., Kido N., Arakawa Y., Mori M., Naito S., Ohta M., Kato N. Rapid small-scale preparation method of cell surface polysaccharides. Microbiol Immunol. 1990;34(7):635–641. doi: 10.1111/j.1348-0421.1990.tb01039.x. [DOI] [PubMed] [Google Scholar]
  33. Takeshita S., Sato M., Toba M., Masahashi W., Hashimoto-Gotoh T. High-copy-number and low-copy-number plasmid vectors for lacZ alpha-complementation and chloramphenicol- or kanamycin-resistance selection. Gene. 1987;61(1):63–74. doi: 10.1016/0378-1119(87)90365-9. [DOI] [PubMed] [Google Scholar]
  34. Wacharotayankun R., Arakawa Y., Ohta M., Hasegawa T., Mori M., Horii T., Kato N. Involvement of rcsB in Klebsiella K2 capsule synthesis in Escherichia coli K-12. J Bacteriol. 1992 Feb;174(3):1063–1067. doi: 10.1128/jb.174.3.1063-1067.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wacharotayankun R., Arakawa Y., Ohta M., Tanaka K., Akashi T., Mori M., Kato N. Enhancement of extracapsular polysaccharide synthesis in Klebsiella pneumoniae by RmpA2, which shows homology to NtrC and FixJ. Infect Immun. 1993 Aug;61(8):3164–3174. doi: 10.1128/iai.61.8.3164-3174.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Williams P., Lambert P. A., Haigh C. G., Brown M. R. The influence of the O and K antigens of Klebsiella aerogenes on surface hydrophobicity and susceptibility to phagocytosis and antimicrobial agents. J Med Microbiol. 1986 Mar;21(2):125–132. doi: 10.1099/00222615-21-2-125. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES