Abstract
Biodegradation of metal-citrate complexes by Pseudomonas fluorescens depends on the nature of the complex formed between the metal and citric acid. Bidentate Fe(III)-, Ni-, and Zn-citrate complexes were readily biodegraded, but the tridentate Cd- and Cu-citrate, and U-citrate complexes were not. The biodegradation of Ni- and Zn-citrate commenced after an initial lag period; the former showed only partial (70%) degradation, whereas the latter was completely degraded. Uptake studies with 14C-labeled citric acid and metal-citrate complexes showed that cells grown in medium containing citric acid transported free citric acid at the rate of 28 nmol min-1 and Fe(III)-citrate at the rate of 12.6 nmol min-1 but not Cd-, Cu-, Ni-, U-, and Zn-citrate complexes. However, cells grown in medium containing Ni- or Zn-citrate transported both Ni- and Zn-citrate, suggesting the involvement of a common, inducible transport factor. Cell extracts degraded Fe(III)-, Ni-, U-, and Zn-citrate complexes in the following order: The cell extract did not degrade Cd- or Cu-citrate complexes. These results show that the biodegradation of the U-citrate complex was limited by the lack of transport inside the cell and that the tridentate Cd- and Cu-citrate complexes were neither transported inside the cell nor metabolized by the bacterium.
Full Text
The Full Text of this article is available as a PDF (201.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Antranikian G., Gottschalk G. Phosphorylation of citrate lyase ligase in Clostridium sphenoides and regulation of anaerobic citrate metabolism in other bacteria. Biochimie. 1989 Sep-Oct;71(9-10):1029–1037. doi: 10.1016/0300-9084(89)90107-7. [DOI] [PubMed] [Google Scholar]
- Bergsma J., Konings W. N. The properties of citrate transport in membrane vesicles from Bacillus subtilis. Eur J Biochem. 1983 Jul 15;134(1):151–156. doi: 10.1111/j.1432-1033.1983.tb07545.x. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Brynhildsen L., Rosswall T. Effects of cadmium, copper, magnesium, and zinc on the decomposition of citrate by a Klebsiella sp. Appl Environ Microbiol. 1989 Jun;55(6):1375–1379. doi: 10.1128/aem.55.6.1375-1379.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bryson M. F., Drake H. L. Energy-dependent transport of nickel by Clostridium pasteurianum. J Bacteriol. 1988 Jan;170(1):234–238. doi: 10.1128/jb.170.1.234-238.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bucheder F., Broda E. Energy-dependent zinc transport by escherichia coli. Eur J Biochem. 1974 Jun 15;45(2):555–559. doi: 10.1111/j.1432-1033.1974.tb03581.x. [DOI] [PubMed] [Google Scholar]
- Emptage M. H., Dreyers J. L., Kennedy M. C., Beinert H. Optical and EPR characterization of different species of active and inactive aconitase. J Biol Chem. 1983 Sep 25;258(18):11106–11111. [PubMed] [Google Scholar]
- Emptage M. H., Kent T. A., Kennedy M. C., Beinert H., Münck E. Mössbauer and EPR studies of activated aconitase: development of a localized valence state at a subsite of the [4Fe-4S] cluster on binding of citrate. Proc Natl Acad Sci U S A. 1983 Aug;80(15):4674–4678. doi: 10.1073/pnas.80.15.4674. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Francis A. J., Dodge C. J. Influence of complex structure on the biodegradation of iron-citrate complexes. Appl Environ Microbiol. 1993 Jan;59(1):109–113. doi: 10.1128/aem.59.1.109-113.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fu C. L., Maier R. J. Competitive inhibition of an energy-dependent nickel transport system by divalent cations in Bradyrhizobium japonicum JH. Appl Environ Microbiol. 1991 Dec;57(12):3511–3516. doi: 10.1128/aem.57.12.3511-3516.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Good N. E., Winget G. D., Winter W., Connolly T. N., Izawa S., Singh R. M. Hydrogen ion buffers for biological research. Biochemistry. 1966 Feb;5(2):467–477. doi: 10.1021/bi00866a011. [DOI] [PubMed] [Google Scholar]
- Guerinot M. L., Meidl E. J., Plessner O. Citrate as a siderophore in Bradyrhizobium japonicum. J Bacteriol. 1990 Jun;172(6):3298–3303. doi: 10.1128/jb.172.6.3298-3303.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kent T. A., Emptage M. H., Merkle H., Kennedy M. C., Beinert H., Münck E. Mössbauer studies of aconitase. Substrate and inhibitor binding, reaction intermediates, and hyperfine interactions of reduced 3Fe and 4Fe clusters. J Biol Chem. 1985 Jun 10;260(11):6871–6881. [PubMed] [Google Scholar]
- Lauble H., Kennedy M. C., Beinert H., Stout C. D. Crystal structures of aconitase with isocitrate and nitroisocitrate bound. Biochemistry. 1992 Mar 17;31(10):2735–2748. doi: 10.1021/bi00125a014. [DOI] [PubMed] [Google Scholar]
- Madsen E. L., Alexander M. Effects of chemical speciation on the mineralization of organic compounds by microorganisms. Appl Environ Microbiol. 1985 Aug;50(2):342–349. doi: 10.1128/aem.50.2.342-349.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mago R., Srivastava S. Uptake of Zinc in Pseudomonas sp. Strain UDG26. Appl Environ Microbiol. 1994 Jul;60(7):2367–2370. doi: 10.1128/aem.60.7.2367-2370.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nies D. H., Silver S. Plasmid-determined inducible efflux is responsible for resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus. J Bacteriol. 1989 Feb;171(2):896–900. doi: 10.1128/jb.171.2.896-900.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siddiqui R. A., Schlegel H. G., Meyer M. Inducible and constitutive expression of pMOL28-encoded nickel resistance in Alcaligenes eutrophus N9A. J Bacteriol. 1988 Sep;170(9):4188–4193. doi: 10.1128/jb.170.9.4188-4193.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Srere P. A. The molecular physiology of citrate. Curr Top Cell Regul. 1992;33:261–275. doi: 10.1016/b978-0-12-152833-1.50020-4. [DOI] [PubMed] [Google Scholar]
- Willecke K., Gries E. M., Oehr P. Coupled transport of citrate and magnesium in Bacillus subtilis. J Biol Chem. 1973 Feb 10;248(3):807–814. [PubMed] [Google Scholar]
