Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Apr;177(8):2164–2177. doi: 10.1128/jb.177.8.2164-2177.1995

The hyperthermophilic archaeon Pyrodictium occultum has two alpha-like DNA polymerases.

T Uemori 1, Y Ishino 1, H Doi 1, I Kato 1
PMCID: PMC176862  PMID: 7721707

Abstract

We cloned two genes encoding DNA polymerases from the hyperthermophilic archaeon Pyrodictium occultum. The deduced primary structures of the two gene products have several amino acid sequences which are conserved in the alpha-like (family B) DNA polymerases. Both genes were expressed in Escherichia coli, and highly purified gene products, DNA polymerases I and II (pol I and pol II), were biochemically characterized. Both DNA polymerase activities were heat stable, but only pol II was sensitive to aphidicolin. Both pol I and pol II have associated 5'-->3' and 3'-->5' exonuclease activities. In addition, these DNA polymerases have higher affinity to single-primed single-stranded DNA than to activated DNA; even their primer extension abilities by themselves were very weak. A comparison of the complete amino acid sequences of pol I and pol II with two alpha-like DNA polymerases from yeast cells showed that both pol I and pol II were more similar to yeast DNA polymerase III (ypol III) than to yeast DNA polymerase II (ypol II), in particular in the regions from exo II to exo III and from motif A to motif C. However, comparisons region by region of each polymerase showed that pol I was similar to ypol II and pol II was similar to ypol III from motif C to the C terminus. In contrast, pol I and pol II were similar to ypol III and ypol II, respectively, in the region from exo III to motif A. These findings suggest that both enzymes from P. occultum play a role in the replication of the genomic DNA of this organism and, furthermore, that the study of DNA replication in this thermophilic archaeon may lead to an understanding of the prototypical mechanism of eukaryotic DNA replication.

Full Text

The Full Text of this article is available as a PDF (882.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beese L. S., Steitz T. A. Structural basis for the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. EMBO J. 1991 Jan;10(1):25–33. doi: 10.1002/j.1460-2075.1991.tb07917.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bernad A., Blanco L., Lázaro J. M., Martín G., Salas M. A conserved 3'----5' exonuclease active site in prokaryotic and eukaryotic DNA polymerases. Cell. 1989 Oct 6;59(1):219–228. doi: 10.1016/0092-8674(89)90883-0. [DOI] [PubMed] [Google Scholar]
  3. Bernad A., Zaballos A., Salas M., Blanco L. Structural and functional relationships between prokaryotic and eukaryotic DNA polymerases. EMBO J. 1987 Dec 20;6(13):4219–4225. doi: 10.1002/j.1460-2075.1987.tb02770.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blanco L., Bernad A., Salas M. Evidence favouring the hypothesis of a conserved 3'-5' exonuclease active site in DNA-dependent DNA polymerases. Gene. 1992 Mar 1;112(1):139–144. doi: 10.1016/0378-1119(92)90316-h. [DOI] [PubMed] [Google Scholar]
  5. Boulet A., Simon M., Faye G., Bauer G. A., Burgers P. M. Structure and function of the Saccharomyces cerevisiae CDC2 gene encoding the large subunit of DNA polymerase III. EMBO J. 1989 Jun;8(6):1849–1854. doi: 10.1002/j.1460-2075.1989.tb03580.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brutlag D., Kornberg A. Enzymatic synthesis of deoxyribonucleic acid. 36. A proofreading function for the 3' leads to 5' exonuclease activity in deoxyribonucleic acid polymerases. J Biol Chem. 1972 Jan 10;247(1):241–248. [PubMed] [Google Scholar]
  7. Delarue M., Poch O., Tordo N., Moras D., Argos P. An attempt to unify the structure of polymerases. Protein Eng. 1990 May;3(6):461–467. doi: 10.1093/protein/3.6.461. [DOI] [PubMed] [Google Scholar]
  8. Derbyshire V., Freemont P. S., Sanderson M. R., Beese L., Friedman J. M., Joyce C. M., Steitz T. A. Genetic and crystallographic studies of the 3',5'-exonucleolytic site of DNA polymerase I. Science. 1988 Apr 8;240(4849):199–201. doi: 10.1126/science.2832946. [DOI] [PubMed] [Google Scholar]
  9. Derbyshire V., Grindley N. D., Joyce C. M. The 3'-5' exonuclease of DNA polymerase I of Escherichia coli: contribution of each amino acid at the active site to the reaction. EMBO J. 1991 Jan;10(1):17–24. doi: 10.1002/j.1460-2075.1991.tb07916.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Frey M. W., Nossal N. G., Capson T. L., Benkovic S. J. Construction and characterization of a bacteriophage T4 DNA polymerase deficient in 3'-->5' exonuclease activity. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2579–2583. doi: 10.1073/pnas.90.7.2579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Furusawa M., Doi H. Promotion of evolution: disparity in the frequency of strand-specific misreading between the lagging and leading DNA strands enhances disproportionate accumulation of mutations. J Theor Biol. 1992 Jul 7;157(1):127–133. doi: 10.1016/s0022-5193(05)80761-1. [DOI] [PubMed] [Google Scholar]
  12. Gutman P. D., Minton K. W. Conserved sites in the 5'-3' exonuclease domain of Escherichia coli DNA polymerase. Nucleic Acids Res. 1993 Sep 11;21(18):4406–4407. doi: 10.1093/nar/21.18.4406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Isegawa Y., Sheng J., Sokawa Y., Yamanishi K., Nakagomi O., Ueda S. Selective amplification of cDNA sequence from total RNA by cassette-ligation mediated polymerase chain reaction (PCR): application to sequencing 6.5 kb genome segment of hantavirus strain B-1. Mol Cell Probes. 1992 Dec;6(6):467–475. doi: 10.1016/0890-8508(92)90043-w. [DOI] [PubMed] [Google Scholar]
  14. Ishino Y., Iwasaki H., Fukui H., Mineno J., Kato I., Shinagawa H. Aphidicolin inhibits DNA polymerizing activity but not nucleolytic activity of Escherichia coli DNA polymerase II. Biochimie. 1992 Feb;74(2):131–136. doi: 10.1016/0300-9084(92)90036-e. [DOI] [PubMed] [Google Scholar]
  15. Ishino Y., Iwasaki H., Kato I., Shinagawa H. Amino acid sequence motifs essential to 3'-->5' exonuclease activity of Escherichia coli DNA polymerase II. J Biol Chem. 1994 May 20;269(20):14655–14660. [PubMed] [Google Scholar]
  16. Ishino Y. Rapid and reliable DNA sequencing with a dideoxy sequencing kit. Am Biotechnol Lab. 1992 Sep;10(9):47–47. [PubMed] [Google Scholar]
  17. Ito J., Braithwaite D. K. Compilation and alignment of DNA polymerase sequences. Nucleic Acids Res. 1991 Aug 11;19(15):4045–4057. doi: 10.1093/nar/19.15.4045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Joyce C. M., Fujii D. M., Laks H. S., Hughes C. M., Grindley N. D. Genetic mapping and DNA sequence analysis of mutations in the polA gene of Escherichia coli. J Mol Biol. 1985 Nov 20;186(2):283–293. doi: 10.1016/0022-2836(85)90105-6. [DOI] [PubMed] [Google Scholar]
  19. Lawyer F. C., Stoffel S., Saiki R. K., Chang S. Y., Landre P. A., Abramson R. D., Gelfand D. H. High-level expression, purification, and enzymatic characterization of full-length Thermus aquaticus DNA polymerase and a truncated form deficient in 5' to 3' exonuclease activity. PCR Methods Appl. 1993 May;2(4):275–287. doi: 10.1101/gr.2.4.275. [DOI] [PubMed] [Google Scholar]
  20. Morrison A., Araki H., Clark A. B., Hamatake R. K., Sugino A. A third essential DNA polymerase in S. cerevisiae. Cell. 1990 Sep 21;62(6):1143–1151. doi: 10.1016/0092-8674(90)90391-q. [DOI] [PubMed] [Google Scholar]
  21. Morrison A., Bell J. B., Kunkel T. A., Sugino A. Eukaryotic DNA polymerase amino acid sequence required for 3'----5' exonuclease activity. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9473–9477. doi: 10.1073/pnas.88.21.9473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Morrison A., Sugino A. DNA polymerase II, the epsilon polymerase of Saccharomyces cerevisiae. Prog Nucleic Acid Res Mol Biol. 1993;46:93–120. doi: 10.1016/s0079-6603(08)61019-3. [DOI] [PubMed] [Google Scholar]
  23. Patel S. S., Wong I., Johnson K. A. Pre-steady-state kinetic analysis of processive DNA replication including complete characterization of an exonuclease-deficient mutant. Biochemistry. 1991 Jan 15;30(2):511–525. doi: 10.1021/bi00216a029. [DOI] [PubMed] [Google Scholar]
  24. Perler F. B., Comb D. G., Jack W. E., Moran L. S., Qiang B., Kucera R. B., Benner J., Slatko B. E., Nwankwo D. O., Hempstead S. K. Intervening sequences in an Archaea DNA polymerase gene. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5577–5581. doi: 10.1073/pnas.89.12.5577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pisani F. M., De Martino C., Rossi M. A DNA polymerase from the archaeon Sulfolobus solfataricus shows sequence similarity to family B DNA polymerases. Nucleic Acids Res. 1992 Jun 11;20(11):2711–2716. doi: 10.1093/nar/20.11.2711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Prangishvili D., Klenk H. P. Nucleotide sequence of the gene for a 74 kDa DNA polymerase from the archaeon Sulfolobus solfataricus. Nucleic Acids Res. 1993 Jun 11;21(11):2768–2768. doi: 10.1093/nar/21.11.2768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Reha-Krantz L. J., Nonay R. L. Genetic and biochemical studies of bacteriophage T4 DNA polymerase 3'-->5'-exonuclease activity. J Biol Chem. 1993 Dec 25;268(36):27100–27108. [PubMed] [Google Scholar]
  28. Reha-Krantz L. J., Stocki S., Nonay R. L., Dimayuga E., Goodrich L. D., Konigsberg W. H., Spicer E. K. DNA polymerization in the absence of exonucleolytic proofreading: in vivo and in vitro studies. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2417–2421. doi: 10.1073/pnas.88.6.2417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Reiter W. D., Hüdepohl U., Zillig W. Mutational analysis of an archaebacterial promoter: essential role of a TATA box for transcription efficiency and start-site selection in vitro. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9509–9513. doi: 10.1073/pnas.87.24.9509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Simon M., Giot L., Faye G. The 3' to 5' exonuclease activity located in the DNA polymerase delta subunit of Saccharomyces cerevisiae is required for accurate replication. EMBO J. 1991 Aug;10(8):2165–2170. doi: 10.1002/j.1460-2075.1991.tb07751.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Soengas M. S., Esteban J. A., Lázaro J. M., Bernad A., Blasco M. A., Salas M., Blanco L. Site-directed mutagenesis at the Exo III motif of phi 29 DNA polymerase; overlapping structural domains for the 3'-5' exonuclease and strand-displacement activities. EMBO J. 1992 Nov;11(11):4227–4237. doi: 10.1002/j.1460-2075.1992.tb05517.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
  34. Uemori T., Ishino Y., Fujita K., Asada K., Kato I. Cloning of the DNA polymerase gene of Bacillus caldotenax and characterization of the gene product. J Biochem. 1993 Mar;113(3):401–410. doi: 10.1093/oxfordjournals.jbchem.a124058. [DOI] [PubMed] [Google Scholar]
  35. Uemori T., Ishino Y., Toh H., Asada K., Kato I. Organization and nucleotide sequence of the DNA polymerase gene from the archaeon Pyrococcus furiosus. Nucleic Acids Res. 1993 Jan 25;21(2):259–265. doi: 10.1093/nar/21.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wada K. N., Doi H., Tanaka S., Wada Y., Furusawa M. A neo-Darwinian algorithm: asymmetrical mutations due to semiconservative DNA-type replication promote evolution. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11934–11938. doi: 10.1073/pnas.90.24.11934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wang T. S. Eukaryotic DNA polymerases. Annu Rev Biochem. 1991;60:513–552. doi: 10.1146/annurev.bi.60.070191.002501. [DOI] [PubMed] [Google Scholar]
  38. Woese C. R., Fox G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5088–5090. doi: 10.1073/pnas.74.11.5088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Woese C. R., Kandler O., Wheelis M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4576–4579. doi: 10.1073/pnas.87.12.4576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES