Abstract
The cytoplasmic pH (pHin) of Enterococcus hirae growing at pH 9.2 was maintained at about 8.1. Membrane-permeating amines such as ammonia alkalinized the pHin from 8.1 to 9.0 at a high concentration and induced K+ extrusion. The pHin alkalinization was transient; the pHin fell from 9.0 to the original value of pH 8.1, at which point K+ extrusion ceased, and remained constant. Cells accumulated ammonium ion to an extent stoichiometrically equivalent to the K+ loss. This bacterium continued to grow well under this condition. These results suggest that the pHin-responsive primary K+/H+ antiport system (Y. Kakinuma, and K. Igarashi, J. Biol. Chem. 263:14166-14170, 1988) works for the pHin regulation of this organism growing at a high pH.
Full Text
The Full Text of this article is available as a PDF (181.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bakker E. P. Accumulation of thallous ions (Tl+) as a measure of the electrical potential difference across the cytoplasmic membrane of bacteria. Biochemistry. 1978 Jul 11;17(14):2899–2904. doi: 10.1021/bi00607a031. [DOI] [PubMed] [Google Scholar]
- Booth I. R. Regulation of cytoplasmic pH in bacteria. Microbiol Rev. 1985 Dec;49(4):359–378. doi: 10.1128/mr.49.4.359-378.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Douglas R. M., Roberts J. A., Munro A. W., Ritchie G. Y., Lamb A. J., Booth I. R. The distribution of homologues of the Escherichia coli KefC K(+)-efflux system in other bacterial species. J Gen Microbiol. 1991 Aug;137(8):1999–2005. doi: 10.1099/00221287-137-8-1999. [DOI] [PubMed] [Google Scholar]
- Harold F. M., Baarda J. R. Effects of nigericin and monactin on cation permeability of Streptococcus faecalis and metabolic capacities of potassium-depleted cells. J Bacteriol. 1968 Mar;95(3):816–823. doi: 10.1128/jb.95.3.816-823.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harold F. M., Van Brunt J. Circulation of H+ and K+ across the plasma membrane is not obligatory for bacterial growth. Science. 1977 Jul 22;197(4301):372–373. doi: 10.1126/science.69317. [DOI] [PubMed] [Google Scholar]
- Kakinuma Y., Igarashi K. Active potassium extrusion regulated by intracellular pH in Streptococcus faecalis. J Biol Chem. 1988 Oct 5;263(28):14166–14170. [PubMed] [Google Scholar]
- Kakinuma Y. Lowering of cytoplasmic pH is essential for growth of Streptococcus faecalis at high pH. J Bacteriol. 1987 Sep;169(9):4403–4405. doi: 10.1128/jb.169.9.4403-4405.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kakinuma Y. Sodium/proton antiporter in Streptococcus faecalis. J Bacteriol. 1987 Sep;169(9):3886–3890. doi: 10.1128/jb.169.9.3886-3890.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kleiner D. Energy expenditure for cyclic retention of NH3/NH4+ during N2 fixation by Klebsiella pneumoniae. FEBS Lett. 1985 Aug 5;187(2):237–239. doi: 10.1016/0014-5793(85)81249-7. [DOI] [PubMed] [Google Scholar]
- Kobayashi H. A proton-translocating ATPase regulates pH of the bacterial cytoplasm. J Biol Chem. 1985 Jan 10;260(1):72–76. [PubMed] [Google Scholar]
- Kobayashi H., Murakami N., Unemoto T. Regulation of the cytoplasmic pH in Streptococcus faecalis. J Biol Chem. 1982 Nov 25;257(22):13246–13252. [PubMed] [Google Scholar]
- Padan E., Schuldiner S. Molecular physiology of Na+/H+ antiporters, key transporters in circulation of Na+ and H+ in cells. Biochim Biophys Acta. 1994 Apr 28;1185(2):129–151. doi: 10.1016/0005-2728(94)90204-6. [DOI] [PubMed] [Google Scholar]
- Reizer J., Reizer A., Saier M. H., Jr The putative Na+/H+ antiporter (NapA) of Enterococcus hirae is homologous to the putative K+/H+ antiporter (KefC) of Escherichia coli. FEMS Microbiol Lett. 1992 Jul 1;73(1-2):161–163. doi: 10.1016/0378-1097(92)90601-j. [DOI] [PubMed] [Google Scholar]
- Waser M., Hess-Bienz D., Davies K., Solioz M. Cloning and disruption of a putative NaH-antiporter gene of Enterococcus hirae. J Biol Chem. 1992 Mar 15;267(8):5396–5400. [PubMed] [Google Scholar]