Abstract
Rhodobacter sphaeroides H-5 was isolated as a 5-aminolevulinic acid (ALA) auxotroph following treatment of wild-type cells with N-methyl-N-nitroso-N'-nitroguanidine (J. Lascelles and T. Altshuler, J. Bacteriol. 98:721-727, 1969). The existence in R. sphaeroides 2.4.1 of the genes hemA and hemT, each encoding the enzyme 5-aminolevulinic acid synthase (EC 2.3.1.37), raised questions as to the genetic basis for the ALA auxotrophy in mutant H-5. We therefore cloned both the hemA and hemT genes from mutant H-5. The hemA gene has been sequenced in its entirety and bears four base pair substitutions which encode three amino acid changes relative to the sequence of wild-type strain 2.4.1. Complementation analysis of an Escherichia coli ALA auxotroph has revealed that the loss of ALA synthase activity in the HemA mutant enzyme could be localized to two of the amino acid substitutions. On the other hand, the hemT gene from mutant H-5 was able to complement an E. coli mutant requiring ALA for growth. Complementation analyses were also carried out by introducing the cloned hemA or hemT gene of mutant H-5 or wild-type 2.4.1 in trans into H-5 and, in parallel, into our previously described HemA-HemT double mutant strain AT1 (E. L. Neidle and S. Kaplan, J. Bacteriol. 175:2304-2313, 1993). This analysis revealed that while the complementation pattern of mutant AT1 parallels that for the E. coli ALA auxotroph, mutant H-5 could only be complemented by the wild-type hemA gene. The ability of the hemT gene of either mutant H-5 or wild-type 2.4.1 to complement the ALA auxotrophy of mutant AT1 but not mutant H-5 was consistent with beta-galactosidase activities obtained with hemT-lacZ transcriptional fusions. We conclude that the ALA auxotrophy of mutant H-5 arises from (i) a nonfunctional HemA protein containing multiple missense substitutions and (ii) an inability of the normal hemT gene to be expressed in the mutant H-5 genetic background, i.e., an additional mutation of unknown origin is required for hemT expression. These studies bear directly on the regulation of the expression of the hemA and hemT genes of R. sphaeroides 2.4.1.
Full Text
The Full Text of this article is available as a PDF (467.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boyer H. W., Roulland-Dussoix D. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol. 1969 May 14;41(3):459–472. doi: 10.1016/0022-2836(69)90288-5. [DOI] [PubMed] [Google Scholar]
- Davis J., Donohue T. J., Kaplan S. Construction, characterization, and complementation of a Puf- mutant of Rhodobacter sphaeroides. J Bacteriol. 1988 Jan;170(1):320–329. doi: 10.1128/jb.170.1.320-329.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eraso J. M., Kaplan S. prrA, a putative response regulator involved in oxygen regulation of photosynthesis gene expression in Rhodobacter sphaeroides. J Bacteriol. 1994 Jan;176(1):32–43. doi: 10.1128/jb.176.1.32-43.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fanica-Gaignier M., Clement-Metral J. D. ATP inhibition of aminolevulinate (ALA) synthetase activity in Rhodopseudomonas spheroides Y. Biochem Biophys Res Commun. 1971 Jul 2;44(1):192–198. doi: 10.1016/s0006-291x(71)80177-8. [DOI] [PubMed] [Google Scholar]
- Fanica-Gaignier M., Clément-Métral J. Cellular compartmentation of two species of delta-aminolevulinic acid synthetase in a facultative photohetero-trophic bacterium (Rps. spheroides Y.). Biochem Biophys Res Commun. 1973 Dec 10;55(3):610–615. doi: 10.1016/0006-291x(73)91187-x. [DOI] [PubMed] [Google Scholar]
- Ferreira G. C., Neame P. J., Dailey H. A. Heme biosynthesis in mammalian systems: evidence of a Schiff base linkage between the pyridoxal 5'-phosphate cofactor and a lysine residue in 5-aminolevulinate synthase. Protein Sci. 1993 Nov;2(11):1959–1965. doi: 10.1002/pro.5560021117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keen N. T., Tamaki S., Kobayashi D., Trollinger D. Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene. 1988 Oct 15;70(1):191–197. doi: 10.1016/0378-1119(88)90117-5. [DOI] [PubMed] [Google Scholar]
- Lascelles J., Altschuler T. Mutant strains of Rhodopseudomonas spheroides lacking delta-aminolevulinate synthase: growth, heme, and bacteriochlorophyll synthesis. J Bacteriol. 1969 May;98(2):721–727. doi: 10.1128/jb.98.2.721-727.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lascelles J. The accumulation of bacteriochlorophyll precursors by mutant and wild-type strains of Rhodopseudomonas spheroides. Biochem J. 1966 Jul;100(1):175–183. doi: 10.1042/bj1000175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neidle E. L., Kaplan S. 5-Aminolevulinic acid availability and control of spectral complex formation in hemA and hemT mutants of Rhodobacter sphaeroides. J Bacteriol. 1993 Apr;175(8):2304–2313. doi: 10.1128/jb.175.8.2304-2313.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neidle E. L., Kaplan S. Expression of the Rhodobacter sphaeroides hemA and hemT genes, encoding two 5-aminolevulinic acid synthase isozymes. J Bacteriol. 1993 Apr;175(8):2292–2303. doi: 10.1128/jb.175.8.2292-2303.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neidle E. L., Kaplan S. Rhodobacter sphaeroides rdxA, a homolog of Rhizobium meliloti fixG, encodes a membrane protein which may bind cytoplasmic [4Fe-4S] clusters. J Bacteriol. 1992 Oct;174(20):6444–6454. doi: 10.1128/jb.174.20.6444-6454.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prentki P., Krisch H. M. In vitro insertional mutagenesis with a selectable DNA fragment. Gene. 1984 Sep;29(3):303–313. doi: 10.1016/0378-1119(84)90059-3. [DOI] [PubMed] [Google Scholar]
- SISTROM W. R. A requirement for sodium in the growth of Rhodopseudomonas spheroides. J Gen Microbiol. 1960 Jun;22:778–785. doi: 10.1099/00221287-22-3-778. [DOI] [PubMed] [Google Scholar]
- Suwanto A., Kaplan S. Physical and genetic mapping of the Rhodobacter sphaeroides 2.4.1 genome: genome size, fragment identification, and gene localization. J Bacteriol. 1989 Nov;171(11):5840–5849. doi: 10.1128/jb.171.11.5840-5849.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Săsărman A., Surdeanu M., Horodniceanu T. Locus determining the synthesis of delta-aminolevulinic acid in Escherichia coli K-12. J Bacteriol. 1968 Nov;96(5):1882–1884. doi: 10.1128/jb.96.5.1882-1884.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tai T. N., Havelka W. A., Kaplan S. A broad-host-range vector system for cloning and translational lacZ fusion analysis. Plasmid. 1988 May;19(3):175–188. doi: 10.1016/0147-619x(88)90037-6. [DOI] [PubMed] [Google Scholar]
- Tai T. N., Moore M. D., Kaplan S. Cloning and characterization of the 5-aminolevulinate synthase gene(s) from Rhodobacter sphaeroides. Gene. 1988 Oct 15;70(1):139–151. doi: 10.1016/0378-1119(88)90112-6. [DOI] [PubMed] [Google Scholar]
- Tuboi S., Hayasaka S. Control of -aminolevulinate synthetase activity in Rhodopseudomonas spheroides. II. Requirement of a disulfide compound for the conversion of the inactive form of fraction I to the active form. Arch Biochem Biophys. 1972 Jun;150(2):690–697. doi: 10.1016/0003-9861(72)90087-2. [DOI] [PubMed] [Google Scholar]
- Tuboi S., Kim H. J., Kikuchi G. Differential induction of fraction I and fraction II of delta-aminolevulinate synthetase in Rhodopseudomonas spheroides under various incubation conditions. Arch Biochem Biophys. 1970 May;138(1):155–159. doi: 10.1016/0003-9861(70)90294-8. [DOI] [PubMed] [Google Scholar]
- Tuboi S., Kim H. J., Kikuchi G. Occurrence and properes of two types of delta-aminolevulinate synthetase in Rhodopseudomonas spheroides. Arch Biochem Biophys. 1970 May;138(1):147–154. doi: 10.1016/0003-9861(70)90293-6. [DOI] [PubMed] [Google Scholar]
- van Niel C. B. THE CULTURE, GENERAL PHYSIOLOGY, MORPHOLOGY, AND CLASSIFICATION OF THE NON-SULFUR PURPLE AND BROWN BACTERIA. Bacteriol Rev. 1944 Mar;8(1):1–118. doi: 10.1128/br.8.1.1-118.1944. [DOI] [PMC free article] [PubMed] [Google Scholar]