Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 May;177(10):2901–2907. doi: 10.1128/jb.177.10.2901-2907.1995

Synthesis of the Caulobacter ferredoxin protein, FdxA, is cell cycle controlled.

S P Wang 1, P J Kang 1, Y P Chen 1, B Ely 1
PMCID: PMC176965  PMID: 7751303

Abstract

The fdxA gene was identified upstream of and in the opposite direction from the Caulobacter crescentus cysC gene. Analyses of the nucleotide sequence and the deduced amino acid sequence of the fdxA gene demonstrated that it encodes a ferredoxin with a molecular mass of 12,080 Da. This ferredoxin has common structural features with ferredoxins that contain a [3Fe-4S] and a [4Fe-4S] cluster, including seven conserved cysteines responsible for the binding of the two clusters. A mutation in the fdxA gene was obtained, and the resulting strain did not produce one of the two ferredoxins (FdI) found in C. crescentus. Further experiments demonstrated that the fdxA gene is temporally expressed in C. crescentus and that FdI is required for completion of the cell cycle at 37 degrees C.

Full Text

The Full Text of this article is available as a PDF (874.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alley M. R., Maddock J. R., Shapiro L. Polar localization of a bacterial chemoreceptor. Genes Dev. 1992 May;6(5):825–836. doi: 10.1101/gad.6.5.825. [DOI] [PubMed] [Google Scholar]
  2. Barrett J. T., Croft R. H., Ferber D. M., Gerardot C. J., Schoenlein P. V., Ely B. Genetic mapping with Tn5-derived auxotrophs of Caulobacter crescentus. J Bacteriol. 1982 Aug;151(2):888–898. doi: 10.1128/jb.151.2.888-898.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bruschi M., Guerlesquin F. Structure, function and evolution of bacterial ferredoxins. FEMS Microbiol Rev. 1988 Apr-Jun;4(2):155–175. doi: 10.1111/j.1574-6968.1988.tb02741.x. [DOI] [PubMed] [Google Scholar]
  4. Chen Y. P., Yoch D. C. Isolation, characterization, and biological activity of ferredoxin-NAD+ reductase from the methane oxidizer Methylosinus trichosporium OB3b. J Bacteriol. 1989 Sep;171(9):5012–5016. doi: 10.1128/jb.171.9.5012-5016.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Donadio S., Hutchinson C. R. Cloning and characterization of the Saccharopolyspora erythraea fdxA gene encoding ferredoxin. Gene. 1991 Apr;100:231–235. doi: 10.1016/0378-1119(91)90372-i. [DOI] [PubMed] [Google Scholar]
  7. Ely B. DNA sequence of the 3' end of the Caulobacter crescentus 16S rRNA gene. Nucleic Acids Res. 1992 Mar 25;20(6):1423–1423. doi: 10.1093/nar/20.6.1423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ely B. Transfer of drug resistance factors to the dimorphic bacterium Caulobacter crescentus. Genetics. 1979 Mar;91(3):371–380. doi: 10.1093/genetics/91.3.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ely B. Transposition of Tn7 occurs at a single site on the Caulobacter crescentus chromosome. J Bacteriol. 1982 Aug;151(2):1056–1058. doi: 10.1128/jb.151.2.1056-1058.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Evinger M., Agabian N. Envelope-associated nucleoid from Caulobacter crescentus stalked and swarmer cells. J Bacteriol. 1977 Oct;132(1):294–301. doi: 10.1128/jb.132.1.294-301.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gober J. W., Shapiro L. A developmentally regulated Caulobacter flagellar promoter is activated by 3' enhancer and IHF binding elements. Mol Biol Cell. 1992 Aug;3(8):913–926. doi: 10.1091/mbc.3.8.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gomes S. L., Shapiro L. Differential expression and positioning of chemotaxis methylation proteins in Caulobacter. J Mol Biol. 1984 Sep 25;178(3):551–568. doi: 10.1016/0022-2836(84)90238-9. [DOI] [PubMed] [Google Scholar]
  13. Hodgson D., Shaw P., O'Connell M., Henry S., Shapiro L. Caulobacter crescentus fatty acid-dependent cell cycle mutant. J Bacteriol. 1984 Apr;158(1):156–162. doi: 10.1128/jb.158.1.156-162.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Howard J. B., Lorsbach T. W., Ghosh D., Melis K., Stout C. D. Structure of Azotobacter vinelandii 7Fe ferredoxin. Amino acid sequence and electron density maps of residues. J Biol Chem. 1983 Jan 10;258(1):508–522. [PubMed] [Google Scholar]
  15. Johnson R. C., Ely B. Isolation of spontaneously derived mutants of Caulobacter crescentus. Genetics. 1977 May;86(1):25–32. doi: 10.1093/genetics/86.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kang P. J., Shapiro L. Cell cycle arrest of a Caulobacter crescentus secA mutant. J Bacteriol. 1994 Aug;176(16):4958–4965. doi: 10.1128/jb.176.16.4958-4965.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Koga H., Yamaguchi E., Matsunaga K., Aramaki H., Horiuchi T. Cloning and nucleotide sequences of NADH-putidaredoxin reductase gene (camA) and putidaredoxin gene (camB) involved in cytochrome P-450cam hydroxylase of Pseudomonas putida. J Biochem. 1989 Nov;106(5):831–836. doi: 10.1093/oxfordjournals.jbchem.a122939. [DOI] [PubMed] [Google Scholar]
  18. Letts V., Shaw P., Shapiro L., Henry S. Synthesis and utilization of fatty acids by wild-type and fatty acid auxotrophs of Caulobacter crescentus. J Bacteriol. 1982 Sep;151(3):1269–1278. doi: 10.1128/jb.151.3.1269-1278.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mansour J. D., Henry S., Shapiro L. Phospholipid biosynthesis is required for stalk elongation in Caulobacter crescentus. J Bacteriol. 1981 Mar;145(3):1404–1409. doi: 10.1128/jb.145.3.1404-1409.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Martin A. E., Burgess B. K., Iismaa S. E., Smartt C. T., Jacobson M. R., Dean D. R. Construction and characterization of an Azotobacter vinelandii strain with mutations in the genes encoding flavodoxin and ferredoxin I. J Bacteriol. 1989 Jun;171(6):3162–3167. doi: 10.1128/jb.171.6.3162-3167.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Morgan T. V., Lundell D. J., Burgess B. K. Azotobacter vinelandii ferredoxin I: cloning, sequencing, and mutant analysis. J Biol Chem. 1988 Jan 25;263(3):1370–1375. [PubMed] [Google Scholar]
  22. Nathan P., Gomes S. L., Hahnenberger K., Newton A., Shapiro L. Differential localization of membrane receptor chemotaxis proteins in the Caulobacter predivisional cell. J Mol Biol. 1986 Oct 5;191(3):433–440. doi: 10.1016/0022-2836(86)90138-5. [DOI] [PubMed] [Google Scholar]
  23. O'Neill E. A., Bender R. A. Periodic synthesis of phospholipids during the Caulobacter crescentus cell cycle. J Bacteriol. 1987 Jun;169(6):2618–2623. doi: 10.1128/jb.169.6.2618-2623.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Peterson J. A., Lorence M. C., Amarneh B. Putidaredoxin reductase and putidaredoxin. Cloning, sequence determination, and heterologous expression of the proteins. J Biol Chem. 1990 Apr 15;265(11):6066–6073. [PubMed] [Google Scholar]
  25. Reuter S. H., Shapiro L. Asymmetric segregation of heat-shock proteins upon cell division in Caulobacter crescentus. J Mol Biol. 1987 Apr 20;194(4):653–662. doi: 10.1016/0022-2836(87)90242-7. [DOI] [PubMed] [Google Scholar]
  26. Saeki K., Suetsugu Y., Tokuda K., Miyatake Y., Young D. A., Marrs B. L., Matsubara H. Genetic analysis of functional differences among distinct ferredoxins in Rhodobacter capsulatus. J Biol Chem. 1991 Jul 15;266(20):12889–12895. [PubMed] [Google Scholar]
  27. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schatt E., Jouanneau Y., Vignais P. M. Molecular cloning and sequence analysis of the structural gene of ferredoxin I from the photosynthetic bacterium Rhodobacter capsulatus. J Bacteriol. 1989 Nov;171(11):6218–6226. doi: 10.1128/jb.171.11.6218-6226.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schoenlein P. V., Gallman L. M., Ely B. Use of transmissible plasmids as cloning vectors in Caulobacter crescentus. Gene. 1988 Oct 30;70(2):321–329. doi: 10.1016/0378-1119(88)90204-1. [DOI] [PubMed] [Google Scholar]
  30. Schoenlein P. V., Gallman L. S., Winkler M. E., Ely B. Nucleotide sequence of the Caulobacter crescentus flaF and flbT genes and an analysis of codon usage in organisms with G + C-rich genomes. Gene. 1990 Sep 1;93(1):17–25. doi: 10.1016/0378-1119(90)90130-j. [DOI] [PubMed] [Google Scholar]
  31. Shanmugam K. T., Buchanan B. B., Arnon D. I. Ferredoxins in light- and dark-grown photosynthetic cells with special reference to Rhodospirillum rubrum. Biochim Biophys Acta. 1972 Feb 28;256(2):477–486. doi: 10.1016/0005-2728(72)90076-x. [DOI] [PubMed] [Google Scholar]
  32. Stout C. D. Refinement of the 7 Fe ferredoxin from Azotobacter vinelandii at 1.9 A resolution. J Mol Biol. 1989 Feb 5;205(3):545–555. doi: 10.1016/0022-2836(89)90225-8. [DOI] [PubMed] [Google Scholar]
  33. Subramanian V., Liu T. N., Yeh W. K., Serdar C. M., Wackett L. P., Gibson D. T. Purification and properties of ferredoxinTOL. A component of toluene dioxygenase from Pseudomonas putida F1. J Biol Chem. 1985 Feb 25;260(4):2355–2363. [PubMed] [Google Scholar]
  34. Tanaka M., Haniu M., Yasunobu K. T., Evans M. C., Rao K. K. The amino acid sequence of ferredoxin II from Chlorobium limicola, a photosynthetic green bacterium. Biochemistry. 1975 May 6;14(9):1938–1943. doi: 10.1021/bi00680a021. [DOI] [PubMed] [Google Scholar]
  35. Thompson G. A., Scherer D. E., Foxall-Van Aken S., Kenny J. W., Young H. L., Shintani D. K., Kridl J. C., Knauf V. C. Primary structures of the precursor and mature forms of stearoyl-acyl carrier protein desaturase from safflower embryos and requirement of ferredoxin for enzyme activity. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2578–2582. doi: 10.1073/pnas.88.6.2578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wang S. P., Chen Y. P., Ely B. A ferredoxin, designated FdxP, stimulates p-hydroxybenzoate hydroxylase activity in Caulobacter crescentus. J Bacteriol. 1995 May;177(10):2908–2911. doi: 10.1128/jb.177.10.2908-2911.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Yoch D. C., Carithers R. P. Bacterial iron-sulfur proteins. Microbiol Rev. 1979 Sep;43(3):384–421. doi: 10.1128/mr.43.3.384-421.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES