Abstract
Candida albicans produces large amounts of the acyclic pentitol D-arabitol in culture and in infected animals and humans, and most strains also grow on minimal D-arabitol medium. An earlier study showed that the major metabolic precursor of D-arabitol in C. albicans was D-ribulose-5-PO4 from the pentose pathway, that C. albicans contained an NAD-dependent D-arabitol dehydrogenase (ArDH), and that the ArDH structural gene (ARD) encoded a 31-kDa short-chain dehydrogenase that catalyzed the reaction D-arabitol + NAD <=> D-ribulose + NADH. In the present study, we disrupted both ARD chromosomal alleles in C. albicans and analyzed the resulting mutants. The ard null mutation was verified by Southern hybridization, and the null mutant's inability to produce ArDH was verified by Western immunoblotting. The ard null mutant grew well on minimal glucose medium, but it was unable to grow on minimal D-arabitol or D-arabinose medium. Thus, ArDH catalyzes the first step in D-arabitol utilization and a necessary intermediate step in D-arabinose utilization. Unexpectedly, the ard null mutant synthesized D-arabitol from glucose. Moreover, 13C nuclear magnetic resonance studies showed that the ard null mutant and its wild-type parent synthesized D-arabitol via the same pathway. These results imply that C. albicans synthesizes and utilizes D-arabitol via separate metabolic pathways, which was not previously suspected for fungi.
Full Text
The Full Text of this article is available as a PDF (535.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alani E., Cao L., Kleckner N. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics. 1987 Aug;116(4):541–545. doi: 10.1534/genetics.112.541.test. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Albertyn J., Hohmann S., Thevelein J. M., Prior B. A. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol Cell Biol. 1994 Jun;14(6):4135–4144. doi: 10.1128/mcb.14.6.4135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BLAKLEY E. R., SPENCER J. F. Studies on the formation of D-arabitol by osmophilic yeasts. Can J Biochem Physiol. 1962 Dec;40:1737–1748. [PubMed] [Google Scholar]
- Chattaway F. W., Odds F. C., Barlow A. J. An examination of the production of hydrolytic enzymes and toxins by pathogenic strains of Candida albicans. J Gen Microbiol. 1971 Aug;67(3):255–263. doi: 10.1099/00221287-67-3-255. [DOI] [PubMed] [Google Scholar]
- Fonzi W. A., Irwin M. Y. Isogenic strain construction and gene mapping in Candida albicans. Genetics. 1993 Jul;134(3):717–728. doi: 10.1093/genetics/134.3.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gold J. W., Wong B., Bernard E. M., Kiehn T. E., Armstrong D. Serum arabinitol concentrations and arabinitol/creatinine ratios in invasive candidiasis. J Infect Dis. 1983 Mar;147(3):504–513. doi: 10.1093/infdis/147.3.504. [DOI] [PubMed] [Google Scholar]
- Gorman J. A., Chan W., Gorman J. W. Repeated use of GAL1 for gene disruption in Candida albicans. Genetics. 1991 Sep;129(1):19–24. doi: 10.1093/genetics/129.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goshorn A. K., Grindle S. M., Scherer S. Gene isolation by complementation in Candida albicans and applications to physical and genetic mapping. Infect Immun. 1992 Mar;60(3):876–884. doi: 10.1128/iai.60.3.876-884.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hult K., Veide A., Gatenbeck S. The distribution of the NADPH regenerating mannitol cycle among fungal species. Arch Microbiol. 1980 Dec;128(2):253–255. doi: 10.1007/BF00406168. [DOI] [PubMed] [Google Scholar]
- INGRAM J. M., WOOD W. A. ENZYMATIC BASIS FOR D-ARBITOL PRODUCTION BY SACCHAROMYCES ROUXII. J Bacteriol. 1965 May;89:1186–1194. doi: 10.1128/jb.89.5.1186-1194.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jennings D. H. Polyol metabolism in fungi. Adv Microb Physiol. 1984;25:149–193. doi: 10.1016/s0065-2911(08)60292-1. [DOI] [PubMed] [Google Scholar]
- Kiehn T. E., Bernard E. M., Gold J. W., Armstrong D. Candidiasis: detection by gas-liquid chromatography of D-arabinitol, a fungal metabolite, in human serum. Science. 1979 Nov 2;206(4418):577–580. doi: 10.1126/science.493963. [DOI] [PubMed] [Google Scholar]
- Larsson K., Ansell R., Eriksson P., Adler L. A gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) complements an osmosensitive mutant of Saccharomyces cerevisiae. Mol Microbiol. 1993 Dec;10(5):1101–1111. doi: 10.1111/j.1365-2958.1993.tb00980.x. [DOI] [PubMed] [Google Scholar]
- Murray J. S., Wong M. L., Miyada C. G., Switchenko A. C., Goodman T. C., Wong B. Isolation, characterization and expression of the gene that encodes D-arabinitol dehydrogenase in Candida tropicalis. Gene. 1995 Mar 21;155(1):123–128. doi: 10.1016/0378-1119(94)00900-d. [DOI] [PubMed] [Google Scholar]
- Scherer S., Magee P. T. Genetics of Candida albicans. Microbiol Rev. 1990 Sep;54(3):226–241. doi: 10.1128/mr.54.3.226-241.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmatz D. M., Baginsky W. F., Turner M. J. Evidence for and characterization of a mannitol cycle in Eimeria tenella. Mol Biochem Parasitol. 1989 Jan 15;32(2-3):263–270. doi: 10.1016/0166-6851(89)90075-3. [DOI] [PubMed] [Google Scholar]
- Tarczynski M. C., Jensen R. G., Bohnert H. J. Expression of a bacterial mtlD gene in transgenic tobacco leads to production and accumulation of mannitol. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2600–2604. doi: 10.1073/pnas.89.7.2600. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WEIMBERG R. Mode of formation of D-arabitol by Saccharomyces mellis. Biochem Biophys Res Commun. 1962 Aug 31;8:442–445. doi: 10.1016/0006-291x(62)90293-0. [DOI] [PubMed] [Google Scholar]
- Wang H. T., Rahaim P., Robbins P., Yocum R. R. Cloning, sequence, and disruption of the Saccharomyces diastaticus DAR1 gene encoding a glycerol-3-phosphate dehydrogenase. J Bacteriol. 1994 Nov;176(22):7091–7095. doi: 10.1128/jb.176.22.7091-7095.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wong B., Bernard E. M., Gold J. W., Fong D., Silber A., Armstrong D. Increased arabinitol levels in experimental candidiasis in rats: arabinitol appearance rates, arabinitol/creatinine ratios, and severity of infection. J Infect Dis. 1982 Sep;146(3):346–352. doi: 10.1093/infdis/146.3.346. [DOI] [PubMed] [Google Scholar]
- Wong B., Brauer K. L. Enantioselective measurement of fungal D-arabinitol in the sera of normal adults and patients with candidiasis. J Clin Microbiol. 1988 Sep;26(9):1670–1674. doi: 10.1128/jcm.26.9.1670-1674.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wong B., Murray J. S., Castellanos M., Croen K. D. D-arabitol metabolism in Candida albicans: studies of the biosynthetic pathway and the gene that encodes NAD-dependent D-arabitol dehydrogenase. J Bacteriol. 1993 Oct;175(19):6314–6320. doi: 10.1128/jb.175.19.6314-6320.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]