Abstract
Adenylate kinase has been isolated from four related methanogenic members of the Archaea. For each, the optimum temperature for enzyme activity was similar to the temperature for optimal microbial growth and was approximately 30 degrees C for Methanococcus voltae, 70 degrees C for Methanococcus thermolithotrophicus, 80 degrees C for Methanococcus igneus, and 80 to 90 degrees C for Methanococcus jannaschii. The enzymes were sensitive to the adenylate kinase inhibitor P1, P5-di(adenosine-5')pentaphosphate, a property that was exploited to purify the enzymes by CIBACRON Blue affinity chromatography. The enzymes had an estimated molecular mass (approximately 23 to 25 kDa) in the range common for adenylate kinases. Each of the enzymes had a region of amino acid sequence close to its N terminus that was similar to the canonical P-loop sequence reported for all adenylate kinases. However, the methanogen sequences lacked a lysine residue that has previously been found to be invariant in adenylate kinases, including an enzyme isolated from the archaeon Sulfolobus acidocaldarius. If verified as a nucleotide-binding domain, the methanogen sequence would represent a novel nucleotide-binding motif. There was no correlation between amino acid abundance and the optimal temperature for enzyme activity.
Full Text
The Full Text of this article is available as a PDF (409.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. Methanogens: reevaluation of a unique biological group. Microbiol Rev. 1979 Jun;43(2):260–296. doi: 10.1128/mr.43.2.260-296.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berry M. B., Meador B., Bilderback T., Liang P., Glaser M., Phillips G. N., Jr The closed conformation of a highly flexible protein: the structure of E. coli adenylate kinase with bound AMP and AMPPNP. Proteins. 1994 Jul;19(3):183–198. doi: 10.1002/prot.340190304. [DOI] [PubMed] [Google Scholar]
- Blaut M., Müller V., Gottschalk G. Energetics of methanogenesis studied in vesicular systems. J Bioenerg Biomembr. 1992 Dec;24(6):529–546. doi: 10.1007/BF00762346. [DOI] [PubMed] [Google Scholar]
- Brock T. D., Brock K. M., Belly R. T., Weiss R. L. Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol. 1972;84(1):54–68. doi: 10.1007/BF00408082. [DOI] [PubMed] [Google Scholar]
- Burggraf S., Fricke H., Neuner A., Kristjansson J., Rouvier P., Mandelco L., Woese C. R., Stetter K. O. Methanococcus igneus sp. nov., a novel hyperthermophilic methanogen from a shallow submarine hydrothermal system. Syst Appl Microbiol. 1990;13:263–269. doi: 10.1016/s0723-2020(11)80197-9. [DOI] [PubMed] [Google Scholar]
- Buth D. G., Murphy R. W. Use of nicotinamide adenine dinucleotide (NAD)-dependent glucose-6-phosphate dehydrogenase in enzyme staining procedures. Stain Technol. 1980 May;55(3):173–176. doi: 10.3109/10520298009067234. [DOI] [PubMed] [Google Scholar]
- Chen W., Konisky J. Characterization of a membrane-associated ATPase from Methanococcus voltae, a methanogenic member of the Archaea. J Bacteriol. 1993 Sep;175(17):5677–5682. doi: 10.1128/jb.175.17.5677-5682.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deppenmeier U., Blaut M., Mahlmann A., Gottschalk G. Reduced coenzyme F420: heterodisulfide oxidoreductase, a proton- translocating redox system in methanogenic bacteria. Proc Natl Acad Sci U S A. 1990 Dec 1;87(23):9449–9453. doi: 10.1073/pnas.87.23.9449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DiMarco A. A., Bobik T. A., Wolfe R. S. Unusual coenzymes of methanogenesis. Annu Rev Biochem. 1990;59:355–394. doi: 10.1146/annurev.bi.59.070190.002035. [DOI] [PubMed] [Google Scholar]
- Dreusicke D., Karplus P. A., Schulz G. E. Refined structure of porcine cytosolic adenylate kinase at 2.1 A resolution. J Mol Biol. 1988 Jan 20;199(2):359–371. doi: 10.1016/0022-2836(88)90319-1. [DOI] [PubMed] [Google Scholar]
- Dybas M., Konisky J. Energy transduction in the methanogen Methanococcus voltae is based on a sodium current. J Bacteriol. 1992 Sep;174(17):5575–5583. doi: 10.1128/jb.174.17.5575-5583.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Egner U., Tomasselli A. G., Schulz G. E. Structure of the complex of yeast adenylate kinase with the inhibitor P1,P5-di(adenosine-5'-)pentaphosphate at 2.6 A resolution. J Mol Biol. 1987 Jun 5;195(3):649–658. doi: 10.1016/0022-2836(87)90188-4. [DOI] [PubMed] [Google Scholar]
- Kath T., Schmid R., Schäfer G. Identification, cloning, and expression of the gene for adenylate kinase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Arch Biochem Biophys. 1993 Dec;307(2):405–410. doi: 10.1006/abbi.1993.1607. [DOI] [PubMed] [Google Scholar]
- Knighton D. R., Zheng J. H., Ten Eyck L. F., Ashford V. A., Xuong N. H., Taylor S. S., Sowadski J. M. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science. 1991 Jul 26;253(5018):407–414. doi: 10.1126/science.1862342. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lacher K., Schäfer G. Archaebacterial adenylate kinase from the thermoacidophile Sulfolobus acidocaldarius: purification, characterization, and partial sequence. Arch Biochem Biophys. 1993 May;302(2):391–397. doi: 10.1006/abbi.1993.1229. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lienhard G. E., Secemski I. I. P 1 ,P 5 -Di(adenosine-5')pentaphosphate, a potent multisubstrate inhibitor of adenylate kinase. J Biol Chem. 1973 Feb 10;248(3):1121–1123. [PubMed] [Google Scholar]
- Müller C. W., Schulz G. E. Structure of the complex between adenylate kinase from Escherichia coli and the inhibitor Ap5A refined at 1.9 A resolution. A model for a catalytic transition state. J Mol Biol. 1992 Mar 5;224(1):159–177. doi: 10.1016/0022-2836(92)90582-5. [DOI] [PubMed] [Google Scholar]
- Oberlies G., Fuchs G., Thauer R. K. Acetate thiokinase and the assimilation of acetate in methanobacterium thermoautotrophicum. Arch Microbiol. 1980 Dec;128(2):248–252. doi: 10.1007/BF00406167. [DOI] [PubMed] [Google Scholar]
- Saint Girons I., Gilles A. M., Margarita D., Michelson S., Monnot M., Fermandjian S., Danchin A., Bârzu O. Structural and catalytic characteristics of Escherichia coli adenylate kinase. J Biol Chem. 1987 Jan 15;262(2):622–629. [PubMed] [Google Scholar]
- Saraste M., Sibbald P. R., Wittinghofer A. The P-loop--a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci. 1990 Nov;15(11):430–434. doi: 10.1016/0968-0004(90)90281-f. [DOI] [PubMed] [Google Scholar]
- Schulz G. E. Structural and functional relationships in the adenylate kinase family. Cold Spring Harb Symp Quant Biol. 1987;52:429–439. doi: 10.1101/sqb.1987.052.01.050. [DOI] [PubMed] [Google Scholar]
- Walker J. E., Saraste M., Runswick M. J., Gay N. J. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982;1(8):945–951. doi: 10.1002/j.1460-2075.1982.tb01276.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whitman W. B., Ankwanda E., Wolfe R. S. Nutrition and carbon metabolism of Methanococcus voltae. J Bacteriol. 1982 Mar;149(3):852–863. doi: 10.1128/jb.149.3.852-863.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woese C. R., Kandler O., Wheelis M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4576–4579. doi: 10.1073/pnas.87.12.4576. [DOI] [PMC free article] [PubMed] [Google Scholar]