Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Jun;177(11):3067–3070. doi: 10.1128/jb.177.11.3067-3070.1995

Damped oscillations in photosensory transduction of Halobacterium salinarium induced by repellent light stimuli.

U Krohs 1
PMCID: PMC176994  PMID: 7768802

Abstract

Halobacteria usually respond to repellent light stimuli by reversing their swimming direction. However, cells seem to be in a refractory state when stimulated immediately after performance of a reversal. I found that in this case, a special type of response is exhibited rather than spontaneous behavior. A strong stimulus induced a rhythmic pattern of successive reversals. On stimulation immediately after a reversal of swimming direction, the first of these reversals was skipped without influence on the rhythm. The results suggest that the stimulus evokes an oscillating signal which alters reversal probability but which is itself independent of the state of the motor apparatus. The oscillation has a period length of about 5 s and is damped out within a few cycles. It does not depend on the special sensory photosystem through which the stimulus is applied. The consequences of these findings for the model description of swimming behavior control in halobacteria are discussed.

Full Text

The Full Text of this article is available as a PDF (239.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barak R., Eisenbach M. Correlation between phosphorylation of the chemotaxis protein CheY and its activity at the flagellar motor. Biochemistry. 1992 Feb 18;31(6):1821–1826. doi: 10.1021/bi00121a034. [DOI] [PubMed] [Google Scholar]
  2. Hess J. F., Oosawa K., Kaplan N., Simon M. I. Phosphorylation of three proteins in the signaling pathway of bacterial chemotaxis. Cell. 1988 Apr 8;53(1):79–87. doi: 10.1016/0092-8674(88)90489-8. [DOI] [PubMed] [Google Scholar]
  3. Krohs U. Sensitivity of Halobacterium salinarium to attractant light stimuli does not change periodically. FEBS Lett. 1994 Aug 29;351(1):133–136. doi: 10.1016/0014-5793(94)00844-2. [DOI] [PubMed] [Google Scholar]
  4. Larsen S. H., Reader R. W., Kort E. N., Tso W. W., Adler J. Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli. Nature. 1974 May 3;249(452):74–77. doi: 10.1038/249074a0. [DOI] [PubMed] [Google Scholar]
  5. Lucia S., Ascoli C., Petracchi D. Photobehavior of Halobacterium halobium: sinusoidal stimulation and a suppression effect of responses to flashes. Biophys J. 1992 Jun;61(6):1529–1539. doi: 10.1016/S0006-3495(92)81957-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Marwan W., Alam M., Oesterhelt D. Rotation and switching of the flagellar motor assembly in Halobacterium halobium. J Bacteriol. 1991 Mar;173(6):1971–1977. doi: 10.1128/jb.173.6.1971-1977.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Marwan W., Oesterhelt D. Signal formation in the halobacterial photophobic response mediated by a fourth retinal protein (P480). J Mol Biol. 1987 May 20;195(2):333–342. doi: 10.1016/0022-2836(87)90654-1. [DOI] [PubMed] [Google Scholar]
  8. McCain D. A., Amici L. A., Spudich J. L. Kinetically resolved states of the Halobacterium halobium flagellar motor switch and modulation of the switch by sensory rhodopsin I. J Bacteriol. 1987 Oct;169(10):4750–4758. doi: 10.1128/jb.169.10.4750-4758.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Otomo J., Marwan W., Oesterhelt D., Desel H., Uhl R. Biosynthesis of the two halobacterial light sensors P480 and sensory rhodopsin and variation in gain of their signal transduction chains. J Bacteriol. 1989 Apr;171(4):2155–2159. doi: 10.1128/jb.171.4.2155-2159.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Schimz A., Hildebrand E. Nonrandom structures in the locomotor behavior of Halobacterium: a bifurcation route to chaos? Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):457–460. doi: 10.1073/pnas.89.2.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Schneegurt M. A., Sherman D. M., Nayar S., Sherman L. A. Oscillating behavior of carbohydrate granule formation and dinitrogen fixation in the cyanobacterium Cyanothece sp. strain ATCC 51142. J Bacteriol. 1994 Mar;176(6):1586–1597. doi: 10.1128/jb.176.6.1586-1597.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Spudich E. N., Spudich J. L. Control of transmembrane ion fluxes to select halorhodopsin-deficient and other energy-transduction mutants of Halobacterium halobium. Proc Natl Acad Sci U S A. 1982 Jul;79(14):4308–4312. doi: 10.1073/pnas.79.14.4308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Spudich E. N., Sundberg S. A., Manor D., Spudich J. L. Properties of a second sensory receptor protein in Halobacterium halobium phototaxis. Proteins. 1986 Nov;1(3):239–246. doi: 10.1002/prot.340010306. [DOI] [PubMed] [Google Scholar]
  14. Spudich J. L., Bogomolni R. A. Mechanism of colour discrimination by a bacterial sensory rhodopsin. Nature. 1984 Dec 6;312(5994):509–513. doi: 10.1038/312509a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Spudich J. L., Bogomolni R. A. Sensory rhodopsins of halobacteria. Annu Rev Biophys Biophys Chem. 1988;17:193–215. doi: 10.1146/annurev.bb.17.060188.001205. [DOI] [PubMed] [Google Scholar]
  16. Wolff E. K., Bogomolni R. A., Scherrer P., Hess B., Stoeckenius W. Color discrimination in halobacteria: spectroscopic characterization of a second sensory receptor covering the blue-green region of the spectrum. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7272–7276. doi: 10.1073/pnas.83.19.7272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wylie D., Stock A., Wong C. Y., Stock J. Sensory transduction in bacterial chemotaxis involves phosphotransfer between Che proteins. Biochem Biophys Res Commun. 1988 Mar 15;151(2):891–896. doi: 10.1016/s0006-291x(88)80365-6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES