Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Jun;177(11):3087–3094. doi: 10.1128/jb.177.11.3087-3094.1995

The posttranslational modification of phosphoglucomutase is regulated by galactose induction and glucose repression in Saccharomyces cerevisiae.

L Fu 1, P Bounelis 1, N Dey 1, B L Browne 1, R B Marchase 1, D M Bedwell 1
PMCID: PMC176997  PMID: 7768805

Abstract

The enzyme phosphoglucomutase functions at a key point in carbohydrate metabolism. In this paper, we show that the synthesis of the major isoform of yeast phosphoglucomutase, encoded by the GAL5 (PGM2) gene, is regulated in a manner that is distinct from that previously described for other enzymes involved in galactose metabolism in the yeast Saccharomyces cerevisiae. Accumulation of this isoform increased four- to sixfold when the culture experienced either glucose depletion or heat shock. However, heat shock induction did not occur unless the cells were under glucose repression. This nonadditive increase in expression suggests that the regulatory mechanisms controlling the heat shock induction and glucose repression of the GAL5 gene are functionally related. We previously demonstrated that phosphoglucomutase is modified by a posttranslational Glc-phosphorylation reaction. We now show that this posttranslational modification, like phosphoglucomutase expression itself, is also regulated by galactose induction and glucose repression. Finally, no evidence was found to indicate that the Glc-phosphorylation of phosphoglucomutase alters its enzymatic activity under the conditions examined.

Full Text

The Full Text of this article is available as a PDF (534.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams B. G. Induction of galactokinase in Saccharomyces cerevisiae: kinetics of induction and glucose effects. J Bacteriol. 1972 Aug;111(2):308–315. doi: 10.1128/jb.111.2.308-315.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Attfield P. V. Trehalose accumulates in Saccharomyces cerevisiae during exposure to agents that induce heat shock response. FEBS Lett. 1987 Dec 10;225(1-2):259–263. doi: 10.1016/0014-5793(87)81170-5. [DOI] [PubMed] [Google Scholar]
  3. Bevan P., Douglas H. C. Genetic control of phosphoglucomutase variants in Saccharomyces cerevisiae. J Bacteriol. 1969 May;98(2):532–535. doi: 10.1128/jb.98.2.532-535.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boles E., Liebetrau W., Hofmann M., Zimmermann F. K. A family of hexosephosphate mutases in Saccharomyces cerevisiae. Eur J Biochem. 1994 Feb 15;220(1):83–96. doi: 10.1111/j.1432-1033.1994.tb18601.x. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  6. Citron B. A., Donelson J. E. Sequence of the Saccharomyces GAL region and its transcription in vivo. J Bacteriol. 1984 Apr;158(1):269–278. doi: 10.1128/jb.158.1.269-278.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DOUGLAS H. C. A mutation in saccharomyces that affects phosphoglucomutase activity and galactose utilization. Biochim Biophys Acta. 1961 Sep 2;52:209–211. doi: 10.1016/0006-3002(61)90924-6. [DOI] [PubMed] [Google Scholar]
  8. Dey N. B., Bounelis P., Fritz T. A., Bedwell D. M., Marchase R. B. The glycosylation of phosphoglucomutase is modulated by carbon source and heat shock in Saccharomyces cerevisiae. J Biol Chem. 1994 Oct 28;269(43):27143–27148. [PubMed] [Google Scholar]
  9. Griggs D. W., Johnston M. Regulated expression of the GAL4 activator gene in yeast provides a sensitive genetic switch for glucose repression. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8597–8601. doi: 10.1073/pnas.88.19.8597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gunja-Smith Z., Patil N. B., Smith E. E. Two pools of glycogen in Saccharomyces. J Bacteriol. 1977 May;130(2):818–825. doi: 10.1128/jb.130.2.818-825.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hottiger T., Schmutz P., Wiemken A. Heat-induced accumulation and futile cycling of trehalose in Saccharomyces cerevisiae. J Bacteriol. 1987 Dec;169(12):5518–5522. doi: 10.1128/jb.169.12.5518-5522.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Johnston M. A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae. Microbiol Rev. 1987 Dec;51(4):458–476. doi: 10.1128/mr.51.4.458-476.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Joshi J. G. Phosphoglucomutase from yeast. Methods Enzymol. 1982;89(Pt 500):599–605. doi: 10.1016/s0076-6879(82)89103-9. [DOI] [PubMed] [Google Scholar]
  14. Kobayashi N., McEntee K. Evidence for a heat shock transcription factor-independent mechanism for heat shock induction of transcription in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6550–6554. doi: 10.1073/pnas.87.17.6550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kobayashi N., McEntee K. Identification of cis and trans components of a novel heat shock stress regulatory pathway in Saccharomyces cerevisiae. Mol Cell Biol. 1993 Jan;13(1):248–256. doi: 10.1128/mcb.13.1.248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lee Y. S., Marks A. R., Gureckas N., Lacro R., Nadal-Ginard B., Kim D. H. Purification, characterization, and molecular cloning of a 60-kDa phosphoprotein in rabbit skeletal sarcoplasmic reticulum which is an isoform of phosphoglucomutase. J Biol Chem. 1992 Oct 15;267(29):21080–21088. [PubMed] [Google Scholar]
  17. Lillie S. H., Pringle J. R. Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J Bacteriol. 1980 Sep;143(3):1384–1394. doi: 10.1128/jb.143.3.1384-1394.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lis J., Wu C. Protein traffic on the heat shock promoter: parking, stalling, and trucking along. Cell. 1993 Jul 16;74(1):1–4. doi: 10.1016/0092-8674(93)90286-y. [DOI] [PubMed] [Google Scholar]
  19. Marchase R. B., Bounelis P., Brumley L. M., Dey N., Browne B., Auger D., Fritz T. A., Kulesza P., Bedwell D. M. Phosphoglucomutase in Saccharomyces cerevisiae is a cytoplasmic glycoprotein and the acceptor for a Glc-phosphotransferase. J Biol Chem. 1993 Apr 15;268(11):8341–8349. [PubMed] [Google Scholar]
  20. Marchase R. B., Saunders A. M., Rivera A. A., Cook J. M. The beta-phosphoro[35S]thioate analogue of UDP-Glc is efficiently utilized by the glucose phosphotransferase and is relatively resistant to hydrolytic degradation. Biochim Biophys Acta. 1987 Nov 26;916(2):157–162. doi: 10.1016/0167-4838(87)90103-8. [DOI] [PubMed] [Google Scholar]
  21. Nehlin J. O., Carlberg M., Ronne H. Control of yeast GAL genes by MIG1 repressor: a transcriptional cascade in the glucose response. EMBO J. 1991 Nov;10(11):3373–3377. doi: 10.1002/j.1460-2075.1991.tb04901.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nehlin J. O., Ronne H. Yeast MIG1 repressor is related to the mammalian early growth response and Wilms' tumour finger proteins. EMBO J. 1990 Sep;9(9):2891–2898. doi: 10.1002/j.1460-2075.1990.tb07479.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Oh D., Hopper J. E. Transcription of a yeast phosphoglucomutase isozyme gene is galactose inducible and glucose repressible. Mol Cell Biol. 1990 Apr;10(4):1415–1422. doi: 10.1128/mcb.10.4.1415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Perisic O., Xiao H., Lis J. T. Stable binding of Drosophila heat shock factor to head-to-head and tail-to-tail repeats of a conserved 5 bp recognition unit. Cell. 1989 Dec 1;59(5):797–806. doi: 10.1016/0092-8674(89)90603-x. [DOI] [PubMed] [Google Scholar]
  25. Ribeiro M. J., Silva J. T., Panek A. D. Trehalose metabolism in Saccharomyces cerevisiae during heat-shock. Biochim Biophys Acta. 1994 Jul 6;1200(2):139–147. doi: 10.1016/0304-4165(94)90128-7. [DOI] [PubMed] [Google Scholar]
  26. Satir B. H., Srisomsap C., Reichman M., Marchase R. B. Parafusin, an exocytic-sensitive phosphoprotein, is the primary acceptor for the glucosylphosphotransferase in Paramecium tetraurelia and rat liver. J Cell Biol. 1990 Sep;111(3):901–907. doi: 10.1083/jcb.111.3.901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schmitt M. E., Brown T. A., Trumpower B. L. A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res. 1990 May 25;18(10):3091–3092. doi: 10.1093/nar/18.10.3091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. St John T. P., Davis R. W. The organization and transcription of the galactose gene cluster of Saccharomyces. J Mol Biol. 1981 Oct 25;152(2):285–315. doi: 10.1016/0022-2836(81)90244-8. [DOI] [PubMed] [Google Scholar]
  29. TSOI A., DOUGLAS H. C. THE EFFECT OF MUTATION OF TWO FORMS OF PHOSPHOGLUCOMUTASE IN SACCHAROMYCES. Biochim Biophys Acta. 1964 Dec 23;92:513–520. doi: 10.1016/0926-6569(64)90011-2. [DOI] [PubMed] [Google Scholar]
  30. Torchia T. E., Hamilton R. W., Cano C. L., Hopper J. E. Disruption of regulatory gene GAL80 in Saccharomyces cerevisiae: effects on carbon-controlled regulation of the galactose/melibiose pathway genes. Mol Cell Biol. 1984 Aug;4(8):1521–1527. doi: 10.1128/mcb.4.8.1521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Veyna N. A., Jay J. C., Srisomsap C., Bounelis P., Marchase R. B. The addition of glucose-1-phosphate to the cytoplasmic glycoprotein phosphoglucomutase is modulated by intracellular calcium in PC12 cells and rat cortical synaptosomes. J Neurochem. 1994 Feb;62(2):456–464. doi: 10.1046/j.1471-4159.1994.62020456.x. [DOI] [PubMed] [Google Scholar]
  32. Werner-Washburne M., Becker J., Kosic-Smithers J., Craig E. A. Yeast Hsp70 RNA levels vary in response to the physiological status of the cell. J Bacteriol. 1989 May;171(5):2680–2688. doi: 10.1128/jb.171.5.2680-2688.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wiemken A. Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie Van Leeuwenhoek. 1990 Oct;58(3):209–217. doi: 10.1007/BF00548935. [DOI] [PubMed] [Google Scholar]
  34. Yarger J. G., Halvorson H. O., Hopper J. E. Regulation of galactokinase (GAL1) enzyme accumulation in Saccharomyces cerevisiae. Mol Cell Biochem. 1984;61(2):173–182. doi: 10.1007/BF00222494. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES