Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Jun;177(11):3120–3127. doi: 10.1128/jb.177.11.3120-3127.1995

Purification and characterization of a cam repressor (CamR) for the cytochrome P-450cam hydroxylase operon on the Pseudomonas putida CAM plasmid.

H Aramaki 1, Y Sagara 1, H Kabata 1, N Shimamoto 1, T Horiuchi 1
PMCID: PMC177001  PMID: 7768809

Abstract

The cytochrome P-450cam hydroxylase operon of Pseudomonas putida PpG1 (ATCC 17543) encodes proteins responsible for early steps of the degradation of D-camphor. Transcription of this operon is negatively controlled by the cam repressor (CamR), and the expression of camR is autoregulated. CamR was purified from Escherichia coli harboring an overproducing plasmid. The repressor forms a homodimer with a molecular mass of 40 kDa, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and gel filtration. CamR protected a specific DNA region from attack by DNase I. This region contains a palindromic operator of the cytochrome P-450cam hydroxylase operon and of the camR gene. Protection was inhibited by the addition of 60 microM D-camphor and also by certain camphor analogs and degradation products, including D-3-bromocamphor, adamantane, 2-adamantanone, 5-exo-hydroxycamphor, and 2,5-diketocamphane. These analogs and degradation products induced cytochrome P-450cam hydroxylase operon expression in vivo.

Full Text

The Full Text of this article is available as a PDF (609.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiba H. Transcription of the Escherichia coli adenylate cyclase gene is negatively regulated by cAMP-cAMP receptor protein. J Biol Chem. 1985 Mar 10;260(5):3063–3070. [PubMed] [Google Scholar]
  2. Aramaki H., Fujita M., Sagara Y., Amemura A., Horiuchi T. Heterologous expression of the cytochrome P450cam hydroxylase operon and the repressor gene of Pseudomonas putida in Escherichia coli. FEMS Microbiol Lett. 1994 Oct 15;123(1-2):49–54. doi: 10.1111/j.1574-6968.1994.tb07200.x. [DOI] [PubMed] [Google Scholar]
  3. Aramaki H., Sagara Y., Hosoi M., Horiuchi T. Evidence for autoregulation of camR, which encodes a repressor for the cytochrome P-450cam hydroxylase operon on the Pseudomonas putida CAM plasmid. J Bacteriol. 1993 Dec;175(24):7828–7833. doi: 10.1128/jb.175.24.7828-7833.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Aramaki H., Sagara Y., Takeuchi K., Koga H., Horiuchi T. Nucleotide sequence of the gene encoding a repressor for the cytochrome P-450cam hydroxylase operon on the Pseudomonas putida CAM plasmid. Biochimie. 1994;76(1):63–70. doi: 10.1016/0300-9084(94)90064-7. [DOI] [PubMed] [Google Scholar]
  5. Bagdasarian M. M., Amann E., Lurz R., Rückert B., Bagdasarian M. Activity of the hybrid trp-lac (tac) promoter of Escherichia coli in Pseudomonas putida. Construction of broad-host-range, controlled-expression vectors. Gene. 1983 Dec;26(2-3):273–282. doi: 10.1016/0378-1119(83)90197-x. [DOI] [PubMed] [Google Scholar]
  6. CONRAD H. E., DUBUS R., GUNSALUS I. C. An enzyme system for cyclic ketone lactonization. Biochem Biophys Res Commun. 1961 Nov 29;6:293–297. doi: 10.1016/0006-291x(61)90382-5. [DOI] [PubMed] [Google Scholar]
  7. Carey J. Gel retardation at low pH resolves trp repressor-DNA complexes for quantitative study. Proc Natl Acad Sci U S A. 1988 Feb;85(4):975–979. doi: 10.1073/pnas.85.4.975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fried M., Crothers D. M. Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res. 1981 Dec 11;9(23):6505–6525. doi: 10.1093/nar/9.23.6505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fujita M., Aramaki H., Horiuchi T., Amemura A. Transcription of the cam operon and camR genes in Pseudomonas putida PpG1. J Bacteriol. 1993 Nov;175(21):6953–6958. doi: 10.1128/jb.175.21.6953-6958.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Haran T. E., Joachimiak A., Sigler P. B. The DNA target of the trp repressor. EMBO J. 1992 Aug;11(8):3021–3030. doi: 10.1002/j.1460-2075.1992.tb05372.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hartline R. A., Gunsalus I. C. Induction specificity and catabolite repression of the early enzymes in camphor degradation by Pseudomonas putida. J Bacteriol. 1971 May;106(2):468–478. doi: 10.1128/jb.106.2.468-478.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hecht M. H., Nelson H. C., Sauer R. T. Mutations in lambda repressor's amino-terminal domain: implications for protein stability and DNA binding. Proc Natl Acad Sci U S A. 1983 May;80(9):2676–2680. doi: 10.1073/pnas.80.9.2676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hermann M., Garg G. K., Gunsalus I. C. Fertility factors in Pseudomonas putida: selection and properties of high-frequency transfer and chromosome donors. J Bacteriol. 1979 Jan;137(1):28–34. doi: 10.1128/jb.137.1.28-34.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Koga H., Aramaki H., Yamaguchi E., Takeuchi K., Horiuchi T., Gunsalus I. C. camR, a negative regulator locus of the cytochrome P-450cam hydroxylase operon. J Bacteriol. 1986 Jun;166(3):1089–1095. doi: 10.1128/jb.166.3.1089-1095.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Koga H., Yamaguchi E., Matsunaga K., Aramaki H., Horiuchi T. Cloning and nucleotide sequences of NADH-putidaredoxin reductase gene (camA) and putidaredoxin gene (camB) involved in cytochrome P-450cam hydroxylase of Pseudomonas putida. J Biochem. 1989 Nov;106(5):831–836. doi: 10.1093/oxfordjournals.jbchem.a122939. [DOI] [PubMed] [Google Scholar]
  16. Kuroki M., Murakami M., Wakisaka M., Ikeda S., Oikawa S., Oshima T., Nakazato H., Kosaki G., Matsuoka Y. Immunoreactivity of recombinant carcinoembryonic antigen proteins expressed in Escherichia coli. Immunol Invest. 1992 Jun;21(3):241–257. doi: 10.3109/08820139209072262. [DOI] [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Messing J. New M13 vectors for cloning. Methods Enzymol. 1983;101:20–78. doi: 10.1016/0076-6879(83)01005-8. [DOI] [PubMed] [Google Scholar]
  19. Pabo C. O., Lewis M. The operator-binding domain of lambda repressor: structure and DNA recognition. Nature. 1982 Jul 29;298(5873):443–447. doi: 10.1038/298443a0. [DOI] [PubMed] [Google Scholar]
  20. Shaw G. C., Fulco A. J. Barbiturate-mediated regulation of expression of the cytochrome P450BM-3 gene of Bacillus megaterium by Bm3R1 protein. J Biol Chem. 1992 Mar 15;267(8):5515–5526. [PubMed] [Google Scholar]
  21. Shaw G. C., Fulco A. J. Inhibition by barbiturates of the binding of Bm3R1 repressor to its operator site on the barbiturate-inducible cytochrome P450BM-3 gene of Bacillus megaterium. J Biol Chem. 1993 Feb 5;268(4):2997–3004. [PubMed] [Google Scholar]
  22. Steitz T. A., Ohlendorf D. H., McKay D. B., Anderson W. F., Matthews B. W. Structural similarity in the DNA-binding domains of catabolite gene activator and cro repressor proteins. Proc Natl Acad Sci U S A. 1982 May;79(10):3097–3100. doi: 10.1073/pnas.79.10.3097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. White R. E., McCarthy M. B., Egeberg K. D., Sligar S. G. Regioselectivity in the cytochromes P-450: control by protein constraints and by chemical reactivities. Arch Biochem Biophys. 1984 Feb 1;228(2):493–502. doi: 10.1016/0003-9861(84)90015-8. [DOI] [PubMed] [Google Scholar]
  24. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES