Abstract
Uptake of 16 amino acids by the filamentous, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 was characterized with regard to kinetic parameters of transport, intracellular accumulation of the transported amino acids, and sensitivity of the transport process to energy metabolism inhibitors. Mutants resistant to certain toxic analogs of some amino acids were isolated that were impaired in amino acid transport. Results obtained in this study, together with those reported previously (A. Herrero and E. Flores, J. Biol. Chem. 265:3931-3935, 1990), suggest that there are at least five amino acid transport systems in strain PCC 7120: one high-affinity, active system for basic amino acids; one low-affinity, passive system for basic amino acids; two high-affinity, active systems with overlapping, but not identical, specificities for neutral amino acids; and one putative system for acidic amino acids. Some of the amino acid transport mutants were impaired in diazotrophic growth. These mutants were unable to develop a normal percentage of heterocysts and normal nitrogenase activity in response to nitrogen stepdown. Putative roles for the amino acid transport systems in uptake of extracellular amino acids, recapture of amino acids that have leaked from the cells, and intercellular transfer of amino acids in the filaments of Anabaena sp. strain PCC 7120 are discussed.
Full Text
The Full Text of this article is available as a PDF (315.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ATFIELD G. N., MORRIS C. J. Analytical separations by highvoltage paper electrophoresis. Amino acids in protein hydrolysates. Biochem J. 1961 Dec;81:606–614. doi: 10.1042/bj0810606. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ames G. F. Structure and mechanism of bacterial periplasmic transport systems. J Bioenerg Biomembr. 1988 Feb;20(1):1–18. doi: 10.1007/BF00762135. [DOI] [PubMed] [Google Scholar]
- Antonucci T. K., Oxender D. L. The molecular biology of amino-acid transport in bacteria. Adv Microb Physiol. 1986;28:145–180. doi: 10.1016/s0065-2911(08)60238-6. [DOI] [PubMed] [Google Scholar]
- Chapman J. S., Meeks J. C. Glutamine and glutamate transport by Anabaena variabilis. J Bacteriol. 1983 Oct;156(1):122–129. doi: 10.1128/jb.156.1.122-129.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FOGG G. E. The production of extracellular nitrogenous substances by a blue-green alga. Proc R Soc Lond B Biol Sci. 1952 Apr 24;139(896):372–397. doi: 10.1098/rspb.1952.0019. [DOI] [PubMed] [Google Scholar]
- Herrero A., Flores E. Transport of basic amino acids by the dinitrogen-fixing cyanobacterium Anabaena PCC 7120. J Biol Chem. 1990 Mar 5;265(7):3931–3935. [PubMed] [Google Scholar]
- Ihlenfeldt M. J., Gibson J. CO2 fixation and its regulation in Anacystis nidulans (Synechococcus). Arch Microbiol. 1975;102(1):13–21. doi: 10.1007/BF00428339. [DOI] [PubMed] [Google Scholar]
- Jüttner F. 14C-labeled metabolites in heterocysts and vegetative cells of Anabaena cylindrica filaments and their presumptive function as transport vehicles of organic carbon and nitrogen. J Bacteriol. 1983 Aug;155(2):628–633. doi: 10.1128/jb.155.2.628-633.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Labarre J., Thuriaux P., Chauvat F. Genetic analysis of amino acid transport in the facultatively heterotrophic cyanobacterium Synechocystis sp. strain 6803. J Bacteriol. 1987 Oct;169(10):4668–4673. doi: 10.1128/jb.169.10.4668-4673.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li Z. C., Bush D. R. DeltapH-Dependent Amino Acid Transport into Plasma Membrane Vesicles Isolated from Sugar Beet Leaves: I. Evidence for Carrier-Mediated, Electrogenic Flux through Multiple Transport Systems. Plant Physiol. 1990 Sep;94(1):268–277. doi: 10.1104/pp.94.1.268. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
- Raboy B., Padan E. Active transport of glucose and alpha-methylglucoside in the cyanobacterium Plectonema boryanum. J Biol Chem. 1978 May 10;253(9):3287–3291. [PubMed] [Google Scholar]
- STEWART W. D. LIBERATION OF EXTRACELLULAR NITROGEN BY 2 NITROGEN-FIXING BLUE-GREEN ALGAE. Nature. 1963 Dec 7;200:1020–1021. doi: 10.1038/2001020a0. [DOI] [PubMed] [Google Scholar]
- Sauer N., Tanner W. Selection and characterization of chlorella mutants deficient in amino Acid transport : further evidence for three independent systems. Plant Physiol. 1985 Nov;79(3):760–764. doi: 10.1104/pp.79.3.760. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spence D. W., Stewart W. D. Proline inhibits N2-fixation in Anabaena 7120. Biochem Biophys Res Commun. 1986 Sep 30;139(3):940–946. doi: 10.1016/s0006-291x(86)80268-6. [DOI] [PubMed] [Google Scholar]
- Thomas J., Meeks J. C., Wolk C. P., Shaffer P. W., Austin S. M. Formation of glutamine from [13n]ammonia, [13n]dinitrogen, and [14C]glutamate by heterocysts isolated from Anabaena cylindrica. J Bacteriol. 1977 Mar;129(3):1545–1555. doi: 10.1128/jb.129.3.1545-1555.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WATANABE A. Production in cultural solution of some amino acids by the atmospheric nitrogen-fixing blue-green algae. Arch Biochem Biophys. 1951 Nov;34(1):50–55. doi: 10.1016/s0003-9861(51)80007-9. [DOI] [PubMed] [Google Scholar]
- Wolk C. P., Austin S. M., Bortins J., Galonsky A. Autoradiographic localization of 13N after fixation of 13N-labeled nitrogen gas by a heterocyst-forming blue-green alga. J Cell Biol. 1974 May;61(2):440–453. doi: 10.1083/jcb.61.2.440. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolk C. P., Cai Y., Cardemil L., Flores E., Hohn B., Murry M., Schmetterer G., Schrautemeier B., Wilson R. Isolation and complementation of mutants of Anabaena sp. strain PCC 7120 unable to grow aerobically on dinitrogen. J Bacteriol. 1988 Mar;170(3):1239–1244. doi: 10.1128/jb.170.3.1239-1244.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolk C. P. Movement of carbon from vegetative cells to heterocysts in Anabaena cylindrica. J Bacteriol. 1968 Dec;96(6):2138–2143. doi: 10.1128/jb.96.6.2138-2143.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolk C. P., Thomas J., Shaffer P. W., Austin S. M., Galonsky A. Pathway of nitrogen metabolism after fixation of 13N-labeled nitrogen gas by the cyanobacterium, Anabaena cylindrica. J Biol Chem. 1976 Aug 25;251(16):5027–5034. [PubMed] [Google Scholar]
