Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Jun;177(11):3191–3198. doi: 10.1128/jb.177.11.3191-3198.1995

The sixth and seventh cholera pandemics are due to independent clones separately derived from environmental, nontoxigenic, non-O1 Vibrio cholerae.

D K Karaolis 1, R Lan 1, P R Reeves 1
PMCID: PMC177010  PMID: 7768818

Abstract

The DNA sequences of the asd genes from 45 isolates of Vibrio cholerae (19 clinical O1 isolates, 2 environmental nontoxigenic O1 isolates, and 24 isolates with different non-O1 antigens) were determined. No differences were found within either sixth- or seventh-pandemic isolates; however, variation was found between the two forms and among the non-O1 isolates. O139 isolates had sequences identical to those of seventh-pandemic isolates. Phylogenetic trees with Vibrio mimicus as the outgroup suggest that the sixth-pandemic, seventh-pandemic, and U.S. Gulf isolates are three clones that have evolved independently from different lineages of environmental, nontoxigenic, non-O1 V. cholerae isolates. There is evidence for horizontal transfer of O antigen, since isolates with nearly identical asd sequences had different O antigens, and isolates with the O1 antigen did not cluster together but were found in different lineages. We also found evidence for recombination events within the asd gene of V. cholerae. V. cholerae may have a higher level of genetic exchange and a lower level of clonality than species such as Salmonella enterica and Escherichia coli.

Full Text

The Full Text of this article is available as a PDF (318.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albert M. J., Siddique A. K., Islam M. S., Faruque A. S., Ansaruzzaman M., Faruque S. M., Sack R. B. Large outbreak of clinical cholera due to Vibrio cholerae non-O1 in Bangladesh. Lancet. 1993 Mar 13;341(8846):704–704. doi: 10.1016/0140-6736(93)90481-u. [DOI] [PubMed] [Google Scholar]
  2. Baine W. B., Mazzotti M., Greco D., Izzo E., Zampieri A., Angioni G., Di Gioia M., Gangarosa E. J., Pocchiari F. Epidemiology of cholera in Italy in 1973. Lancet. 1974 Dec 7;2(7893):1370–1374. doi: 10.1016/s0140-6736(74)92233-8. [DOI] [PubMed] [Google Scholar]
  3. Bastin D. A., Romana L. K., Reeves P. R. Molecular cloning and expression in Escherichia coli K-12 of the rfb gene cluster determining the O antigen of an E. coli O111 strain. Mol Microbiol. 1991 Sep;5(9):2223–2231. doi: 10.1111/j.1365-2958.1991.tb02152.x. [DOI] [PubMed] [Google Scholar]
  4. Blake P. A., Rosenberg M. L., Costa J. B., Ferreira P. S., Guimaraes C. L., Gangarosa E. J. Cholera in Portugal, 1974.I. Modes of transmission. Am J Epidemiol. 1977 Apr;105(4):337–343. doi: 10.1093/oxfordjournals.aje.a112391. [DOI] [PubMed] [Google Scholar]
  5. Boyd E. F., Nelson K., Wang F. S., Whittam T. S., Selander R. K. Molecular genetic basis of allelic polymorphism in malate dehydrogenase (mdh) in natural populations of Escherichia coli and Salmonella enterica. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1280–1284. doi: 10.1073/pnas.91.4.1280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Calia K. E., Murtagh M., Ferraro M. J., Calderwood S. B. Comparison of Vibrio cholerae O139 with V. cholerae O1 classical and El Tor biotypes. Infect Immun. 1994 Apr;62(4):1504–1506. doi: 10.1128/iai.62.4.1504-1506.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cameron D. N., Khambaty F. M., Wachsmuth I. K., Tauxe R. V., Barrett T. J. Molecular characterization of Vibrio cholerae O1 strains by pulsed-field gel electrophoresis. J Clin Microbiol. 1994 Jul;32(7):1685–1690. doi: 10.1128/jcm.32.7.1685-1690.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. FEELEY J. C. CLASSIFICATION OF VIBRIO CHOLERAE (VIBRIO COMMA), INCLUDING EL TOR VIBRIOS, BY INFRASUBSPECIFIC CHARACTERISTICS. J Bacteriol. 1965 Mar;89:665–670. doi: 10.1128/jb.89.3.665-670.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Faruque S. M., Abdul Alim A. R., Roy S. K., Khan F., Nair G. B., Sack R. B., Albert M. J. Molecular analysis of rRNA and cholera toxin genes carried by the new epidemic strain of toxigenic Vibrio cholerae O139 synonym Bengal. J Clin Microbiol. 1994 Apr;32(4):1050–1053. doi: 10.1128/jcm.32.4.1050-1053.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goldberg I., Mekalanos J. J. Effect of a recA mutation on cholera toxin gene amplification and deletion events. J Bacteriol. 1986 Mar;165(3):723–731. doi: 10.1128/jb.165.3.723-731.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Janda J. M., Powers C., Bryant R. G., Abbott S. L. Current perspectives on the epidemiology and pathogenesis of clinically significant Vibrio spp. Clin Microbiol Rev. 1988 Jul;1(3):245–267. doi: 10.1128/cmr.1.3.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kaper J. B., Bradford H. B., Roberts N. C., Falkow S. Molecular epidemiology of Vibrio cholerae in the U.S. Gulf Coast. J Clin Microbiol. 1982 Jul;16(1):129–134. doi: 10.1128/jcm.16.1.129-134.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kaper J. B., Michalski J., Ketley J. M., Levine M. M. Potential for reacquisition of cholera enterotoxin genes by attenuated Vibrio cholerae vaccine strain CVD 103-HgR. Infect Immun. 1994 Apr;62(4):1480–1483. doi: 10.1128/iai.62.4.1480-1483.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Karaolis D. K., Lan R., Reeves P. R. Molecular evolution of the seventh-pandemic clone of Vibrio cholerae and its relationship to other pandemic and epidemic V. cholerae isolates. J Bacteriol. 1994 Oct;176(20):6199–6206. doi: 10.1128/jb.176.20.6199-6206.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Karaolis D. K., Lan R., Reeves P. R. Sequence variation in Shigella sonnei (Sonnei), a pathogenic clone of Escherichia coli, over four continents and 41 years. J Clin Microbiol. 1994 Mar;32(3):796–802. doi: 10.1128/jcm.32.3.796-802.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Koblavi S., Grimont F., Grimont P. A. Clonal diversity of Vibrio cholerae O1 evidenced by rRNA gene restriction patterns. Res Microbiol. 1990 Jul-Aug;141(6):645–657. doi: 10.1016/0923-2508(90)90059-y. [DOI] [PubMed] [Google Scholar]
  17. McCormack W. M., Mosley W. H., Fahimuddin M., Benenson A. S. Endemic cholera in rural East Pakistan. Am J Epidemiol. 1969 Apr;89(4):393–404. doi: 10.1093/oxfordjournals.aje.a120953. [DOI] [PubMed] [Google Scholar]
  18. McIntyre R. C., Tira T., Flood T., Blake P. A. Modes of transmission of cholera in a newly infected population on an atoll: implications for control measures. Lancet. 1979 Feb 10;1(8111):311–314. doi: 10.1016/s0140-6736(79)90719-0. [DOI] [PubMed] [Google Scholar]
  19. Mekalanos J. J., Swartz D. J., Pearson G. D., Harford N., Groyne F., de Wilde M. Cholera toxin genes: nucleotide sequence, deletion analysis and vaccine development. Nature. 1983 Dec 8;306(5943):551–557. doi: 10.1038/306551a0. [DOI] [PubMed] [Google Scholar]
  20. Nair G. B., Oku Y., Takeda Y., Ghosh A., Ghosh R. K., Chattopadhyay S., Pal S. C., Kaper J. B., Takeda T. Toxin profiles of Vibrio cholerae non-O1 from environmental sources in Calcutta, India. Appl Environ Microbiol. 1988 Dec;54(12):3180–3182. doi: 10.1128/aem.54.12.3180-3182.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nair G. B., Ramamurthy T., Bhattacharya S. K., Mukhopadhyay A. K., Garg S., Bhattacharya M. K., Takeda T., Shimada T., Takeda Y., Deb B. C. Spread of Vibrio cholerae O139 Bengal in India. J Infect Dis. 1994 May;169(5):1029–1034. doi: 10.1093/infdis/169.5.1029. [DOI] [PubMed] [Google Scholar]
  22. Nei M., Miller J. C. A simple method for estimating average number of nucleotide substitutions within and between populations from restriction data. Genetics. 1990 Aug;125(4):873–879. doi: 10.1093/genetics/125.4.873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nelson K., Selander R. K. Evolutionary genetics of the proline permease gene (putP) and the control region of the proline utilization operon in populations of Salmonella and Escherichia coli. J Bacteriol. 1992 Nov;174(21):6886–6895. doi: 10.1128/jb.174.21.6886-6895.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Popovic T., Bopp C., Olsvik O., Wachsmuth K. Epidemiologic application of a standardized ribotype scheme for Vibrio cholerae O1. J Clin Microbiol. 1993 Sep;31(9):2474–2482. doi: 10.1128/jcm.31.9.2474-2482.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. ROY C., MUKERJEE S. Variability in the haemolytic property of El Tor vibrios. Ann Biochem Exp Med. 1962 Nov;22:295–296. [PubMed] [Google Scholar]
  26. ROY C., MUKERYEE S., TANAMAL S. J. HAEMOLYTIC AND NON-HAEMOLYTIC EL TOR VIBRIOS. Ann Biochem Exp Med. 1963 Dec;23:553–558. [PubMed] [Google Scholar]
  27. Ramamurthy T., Bag P. K., Pal A., Bhattacharya S. K., Bhattacharya M. K., Shimada T., Takeda T., Karasawa T., Kurazono H., Takeda Y. Virulence patterns of Vibrio cholerae non-O1 strains isolated from hospitalised patients with acute diarrhoea in Calcutta, India. J Med Microbiol. 1993 Oct;39(4):310–317. doi: 10.1099/00222615-39-4-310. [DOI] [PubMed] [Google Scholar]
  28. Ramamurthy T., Garg S., Sharma R., Bhattacharya S. K., Nair G. B., Shimada T., Takeda T., Karasawa T., Kurazano H., Pal A. Emergence of novel strain of Vibrio cholerae with epidemic potential in southern and eastern India. Lancet. 1993 Mar 13;341(8846):703–704. doi: 10.1016/0140-6736(93)90480-5. [DOI] [PubMed] [Google Scholar]
  29. Reeves P. R., Farnell L., Lan R. MULTICOMP: a program for preparing sequence data for phylogenetic analysis. Comput Appl Biosci. 1994 Jun;10(3):281–284. doi: 10.1093/bioinformatics/10.3.281. [DOI] [PubMed] [Google Scholar]
  30. Ruby E. G., Asato L. M. Growth and flagellation of Vibrio fischeri during initiation of the sepiolid squid light organ symbiosis. Arch Microbiol. 1993;159(2):160–167. doi: 10.1007/BF00250277. [DOI] [PubMed] [Google Scholar]
  31. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  32. Salles C. A., Momen H. Identification of Vibrio cholerae by enzyme electrophoresis. Trans R Soc Trop Med Hyg. 1991 Jul-Aug;85(4):544–547. doi: 10.1016/0035-9203(91)90251-s. [DOI] [PubMed] [Google Scholar]
  33. Salmaso S., Greco D., Bonfiglio B., Castellani-Pastoris M., De Felip G., Bracciotti A., Sitzia G., Congiu A., Piu G., Angioni G. Recurrence of Pelecypod-associated cholera in Sardinia. Lancet. 1980 Nov 22;2(8204):1124–1127. doi: 10.1016/s0140-6736(80)92553-2. [DOI] [PubMed] [Google Scholar]
  34. Sengupta T. K., Sengupta D. K., Nair G. B., Ghose A. C. Epidemic isolates of Vibrio cholerae 0139 express antigenically distinct types of colonization pili. FEMS Microbiol Lett. 1994 May 15;118(3):265–271. doi: 10.1111/j.1574-6968.1994.tb06839.x. [DOI] [PubMed] [Google Scholar]
  35. Smith J. M., Smith N. H., O'Rourke M., Spratt B. G. How clonal are bacteria? Proc Natl Acad Sci U S A. 1993 May 15;90(10):4384–4388. doi: 10.1073/pnas.90.10.4384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Stephens J. C. Statistical methods of DNA sequence analysis: detection of intragenic recombination or gene conversion. Mol Biol Evol. 1985 Nov;2(6):539–556. doi: 10.1093/oxfordjournals.molbev.a040371. [DOI] [PubMed] [Google Scholar]
  37. Wachsmuth I. K., Evins G. M., Fields P. I., Olsvik O., Popovic T., Bopp C. A., Wells J. G., Carrillo C., Blake P. A. The molecular epidemiology of cholera in Latin America. J Infect Dis. 1993 Mar;167(3):621–626. doi: 10.1093/infdis/167.3.621. [DOI] [PubMed] [Google Scholar]
  38. Waldor M. K., Mekalanos J. J. ToxR regulates virulence gene expression in non-O1 strains of Vibrio cholerae that cause epidemic cholera. Infect Immun. 1994 Jan;62(1):72–78. doi: 10.1128/iai.62.1.72-78.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES