Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Jun;177(11):3205–3212. doi: 10.1128/jb.177.11.3205-3212.1995

An ATP-dependent L-carnitine transporter in Listeria monocytogenes Scott A is involved in osmoprotection.

A Verheul 1, F M Rombouts 1, R R Beumer 1, T Abee 1
PMCID: PMC177012  PMID: 7768820

Abstract

Listeria monocytogenes is a gram-positive, psychotrophic, food-borne pathogen which is able to grow in osmotically stressful environments. Carnitine (beta-hydroxy-L-tau-N-trimethyl aminobutyrate) can contribute significantly to growth of L. monocytogenes at high osmolarity (R. R. Beumer, M. C. te Giffel, L. J. Cox, F. M. Rombouts, and T. Abee, Appl. Environ. Microbiol. 60:1359-1363, 1994). Transport of L-[N-methyl-14C]carnitine in L. monocytogenes was shown to be energy dependent. Analysis of cell extracts revealed that L-carnitine was not further metabolized, which supplies evidence for its role as an osmoprotectant in L. monocytogenes. Uptake of L-carnitine proceeds in the absence of a proton motive force and is strongly inhibited in the presence of the phosphate analogs vanadate and arsenate. The L-carnitine permease is therefore most likely driven by ATP. Kinetic analysis of L-carnitine transport in glucose-energized cells revealed the presence of a high-affinity uptake system with a Km of 10 microM and a maximum rate of transport (Vmax) of 48 nmol min-1 mg of protein-1. L-[14C]carnitine transport in L. monocytogenes is significantly inhibited by a 10-fold excess of unlabelled L-carnitine, acetylcarnitine, and tau-butyrobetaine, whereas L-proline and betaine display, even at a 100-fold excess, only a weak inhibitory effect. In conclusion, an ATP-dependent L-carnitine transport system in L. monocytogenes is described, and its possible roles in cold adaptation and intracellular growth in mammalian cells are discussed.

Full Text

The Full Text of this article is available as a PDF (355.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abee T., Klaenhammer T. R., Letellier L. Kinetic studies of the action of lactacin F, a bacteriocin produced by Lactobacillus johnsonii that forms poration complexes in the cytoplasmic membrane. Appl Environ Microbiol. 1994 Mar;60(3):1006–1013. doi: 10.1128/aem.60.3.1006-1013.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Abee T., Palmen R., Hellingwerf K. J., Konings W. N. Osmoregulation in Rhodobacter sphaeroides. J Bacteriol. 1990 Jan;172(1):149–154. doi: 10.1128/jb.172.1.149-154.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ames G. F., Mimura C. S., Shyamala V. Bacterial periplasmic permeases belong to a family of transport proteins operating from Escherichia coli to human: Traffic ATPases. FEMS Microbiol Rev. 1990 Aug;6(4):429–446. doi: 10.1111/j.1574-6968.1990.tb04110.x. [DOI] [PubMed] [Google Scholar]
  4. Amezaga M. R., Davidson I., McLaggan D., Verheul A., Abee T., Booth I. R. The role of peptide metabolism in the growth of Listeria monocytogenes ATCC 23074 at high osmolarity. Microbiology. 1995 Jan;141(Pt 1):41–49. doi: 10.1099/00221287-141-1-41. [DOI] [PubMed] [Google Scholar]
  5. Beumer R. R., Te Giffel M. C., Cox L. J., Rombouts F. M., Abee T. Effect of exogenous proline, betaine, and carnitine on growth of Listeria monocytogenes in a minimal medium. Appl Environ Microbiol. 1994 Apr;60(4):1359–1363. doi: 10.1128/aem.60.4.1359-1363.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bieber L. L. Carnitine. Annu Rev Biochem. 1988;57:261–283. doi: 10.1146/annurev.bi.57.070188.001401. [DOI] [PubMed] [Google Scholar]
  7. Bruno M. E., Kaiser A., Montville T. J. Depletion of proton motive force by nisin in Listeria monocytogenes cells. Appl Environ Microbiol. 1992 Jul;58(7):2255–2259. doi: 10.1128/aem.58.7.2255-2259.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Csonka L. N. Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev. 1989 Mar;53(1):121–147. doi: 10.1128/mr.53.1.121-147.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eichler K., Bourgis F., Buchet A., Kleber H. P., Mandrand-Berthelot M. A. Molecular characterization of the cai operon necessary for carnitine metabolism in Escherichia coli. Mol Microbiol. 1994 Sep;13(5):775–786. doi: 10.1111/j.1365-2958.1994.tb00470.x. [DOI] [PubMed] [Google Scholar]
  10. Farber J. M., Peterkin P. I. Listeria monocytogenes, a food-borne pathogen. Microbiol Rev. 1991 Sep;55(3):476–511. doi: 10.1128/mr.55.3.476-511.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fougère F., Le Rudulier D. Uptake of glycine betaine and its analogues by bacteroids of Rhizobium meliloti. J Gen Microbiol. 1990 Jan;136(1):157–163. doi: 10.1099/00221287-136-1-157. [DOI] [PubMed] [Google Scholar]
  12. Gilson E., Alloing G., Schmidt T., Claverys J. P., Dudler R., Hofnung M. Evidence for high affinity binding-protein dependent transport systems in gram-positive bacteria and in Mycoplasma. EMBO J. 1988 Dec 1;7(12):3971–3974. doi: 10.1002/j.1460-2075.1988.tb03284.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Graham J. E., Wilkinson B. J. Staphylococcus aureus osmoregulation: roles for choline, glycine betaine, proline, and taurine. J Bacteriol. 1992 Apr;174(8):2711–2716. doi: 10.1128/jb.174.8.2711-2716.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hutkins R. W., Ellefson W. L., Kashket E. R. Betaine Transport Imparts Osmotolerance on a Strain of Lactobacillus acidophilus. Appl Environ Microbiol. 1987 Oct;53(10):2275–2281. doi: 10.1128/aem.53.10.2275-2281.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Idell-Wenger J. A. Carnitine:acylcarnitine translocase of rat heart mitochondria. Competition for carnitine uptake by carnitine esters. J Biol Chem. 1981 Jun 10;256(11):5597–5603. [PubMed] [Google Scholar]
  16. Joshi A. K., Ahmed S., Ferro-Luzzi Ames G. Energy coupling in bacterial periplasmic transport systems. Studies in intact Escherichia coli cells. J Biol Chem. 1989 Feb 5;264(4):2126–2133. [PubMed] [Google Scholar]
  17. Jung H., Jung K., Kleber H. P. L-carnitine uptake by Escherichia coli. J Basic Microbiol. 1990;30(7):507–514. doi: 10.1002/jobm.3620300711. [DOI] [PubMed] [Google Scholar]
  18. Klarsfeld A. D., Goossens P. L., Cossart P. Five Listeria monocytogenes genes preferentially expressed in infected mammalian cells: plcA, purH, purD, pyrE and an arginine ABC transporter gene, arpJ. Mol Microbiol. 1994 Aug;13(4):585–597. doi: 10.1111/j.1365-2958.1994.tb00453.x. [DOI] [PubMed] [Google Scholar]
  19. Kleber H. P., Aurich H. Evidence for an inducible active transport of carnitine in Pseudomonas aeruginosa. Biochem Biophys Res Commun. 1967 Feb 8;26(3):255–260. doi: 10.1016/0006-291x(67)90114-3. [DOI] [PubMed] [Google Scholar]
  20. Ko R., Smith L. T., Smith G. M. Glycine betaine confers enhanced osmotolerance and cryotolerance on Listeria monocytogenes. J Bacteriol. 1994 Jan;176(2):426–431. doi: 10.1128/jb.176.2.426-431.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kunji E. R., Smid E. J., Plapp R., Poolman B., Konings W. N. Di-tripeptides and oligopeptides are taken up via distinct transport mechanisms in Lactococcus lactis. J Bacteriol. 1993 Apr;175(7):2052–2059. doi: 10.1128/jb.175.7.2052-2059.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  23. Molenaar D., Hagting A., Alkema H., Driessen A. J., Konings W. N. Characteristics and osmoregulatory roles of uptake systems for proline and glycine betaine in Lactococcus lactis. J Bacteriol. 1993 Sep;175(17):5438–5444. doi: 10.1128/jb.175.17.5438-5444.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Murthy M. S., Pande S. V. Mechanism of carnitine acylcarnitine translocase-catalyzed import of acylcarnitines into mitochondria. J Biol Chem. 1984 Jul 25;259(14):9082–9089. [PubMed] [Google Scholar]
  25. Noël H., Goswami T., Pande S. V. Solubilization and reconstitution of rat liver mitochondrial carnitine acylcarnitine translocase. Biochemistry. 1985 Aug 13;24(17):4504–4509. doi: 10.1021/bi00338a003. [DOI] [PubMed] [Google Scholar]
  26. Patchett R. A., Kelly A. F., Kroll R. G. Effect of sodium chloride on the intracellular solute pools of Listeria monocytogenes. Appl Environ Microbiol. 1992 Dec;58(12):3959–3963. doi: 10.1128/aem.58.12.3959-3963.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Patchett R. A., Kelly A. F., Kroll R. G. Transport of glycine-betaine by Listeria monocytogenes. Arch Microbiol. 1994;162(3):205–210. doi: 10.1007/BF00314476. [DOI] [PubMed] [Google Scholar]
  28. Poolman B., Driessen A. J., Konings W. N. Regulation of solute transport in streptococci by external and internal pH values. Microbiol Rev. 1987 Dec;51(4):498–508. doi: 10.1128/mr.51.4.498-508.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Poolman B. Energy transduction in lactic acid bacteria. FEMS Microbiol Rev. 1993 Sep;12(1-3):125–147. doi: 10.1111/j.1574-6976.1993.tb00015.x. [DOI] [PubMed] [Google Scholar]
  30. Poolman B., Konings W. N. Secondary solute transport in bacteria. Biochim Biophys Acta. 1993 Nov 2;1183(1):5–39. doi: 10.1016/0005-2728(93)90003-x. [DOI] [PubMed] [Google Scholar]
  31. Pourkomailian B., Booth I. R. Glycine betaine transport by Staphylococcus aureus: evidence for feedback regulation of the activity of the two transport systems. Microbiology. 1994 Nov;140(Pt 11):3131–3138. doi: 10.1099/13500872-140-11-3131. [DOI] [PubMed] [Google Scholar]
  32. Pourkomailian B., Booth I. R. Glycine betaine transport by Staphylococcus aureus: evidence for two transport systems and for their possible roles in osmoregulation. J Gen Microbiol. 1992 Dec;138(12):2515–2518. doi: 10.1099/00221287-138-12-2515. [DOI] [PubMed] [Google Scholar]
  33. Premaratne R. J., Lin W. J., Johnson E. A. Development of an improved chemically defined minimal medium for Listeria monocytogenes. Appl Environ Microbiol. 1991 Oct;57(10):3046–3048. doi: 10.1128/aem.57.10.3046-3048.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Riou N., Poggi M. C., Le Rudulier D. Characterization of an osmoregulated periplasmic glycine betaine-binding protein in Azospirillum brasilense sp7. Biochimie. 1991 Sep;73(9):1187–1193. doi: 10.1016/0300-9084(91)90003-j. [DOI] [PubMed] [Google Scholar]
  35. Shinbo T., Kamo N., Kurihara K., Kobatake Y. A PVC-based electrode sensitive to DDA+ as a device for monitoring the membrane potential in biological systems. Arch Biochem Biophys. 1978 Apr 30;187(2):414–422. doi: 10.1016/0003-9861(78)90052-8. [DOI] [PubMed] [Google Scholar]
  36. Stimeling K. W., Graham J. E., Kaenjak A., Wilkinson B. J. Evidence for feedback (trans) regulation of, and two systems for, glycine betaine transport by Staphylococcus aureus. Microbiology. 1994 Nov;140(Pt 11):3139–3144. doi: 10.1099/13500872-140-11-3139. [DOI] [PubMed] [Google Scholar]
  37. Verheul A., Hagting A., Amezaga M. R., Booth I. R., Rombouts F. M., Abee T. A di- and tripeptide transport system can supply Listeria monocytogenes Scott A with amino acids essential for growth. Appl Environ Microbiol. 1995 Jan;61(1):226–233. doi: 10.1128/aem.61.1.226-233.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Whatmore A. M., Reed R. H. Determination of turgor pressure in Bacillus subtilis: a possible role for K+ in turgor regulation. J Gen Microbiol. 1990 Dec;136(12):2521–2526. doi: 10.1099/00221287-136-12-2521. [DOI] [PubMed] [Google Scholar]
  39. Yancey P. H., Clark M. E., Hand S. C., Bowlus R. D., Somero G. N. Living with water stress: evolution of osmolyte systems. Science. 1982 Sep 24;217(4566):1214–1222. doi: 10.1126/science.7112124. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES