Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Jun;177(11):3283–3294. doi: 10.1128/jb.177.11.3283-3294.1995

S gene expression and the timing of lysis by bacteriophage lambda.

C Y Chang 1, K Nam 1, R Young 1
PMCID: PMC177022  PMID: 7768829

Abstract

The S gene of bacteriophage lambda encodes the holin required for release of the R endolysin at the onset of phage-induced host lysis. S is the promoter-proximal gene on the single lambda late transcript and spans 107 codons. S has a novel translational initiation region with dual start codons, resulting in the production of two protein products, S105 and S107. Although differing only by the Met-1-Lys-2... N-terminal extension present on S107, the two proteins are thought to have opposing functions, with the shorter polypeptide acting as the lysis effector and the longer one acting as an inhibitor. The expression of wild-type and mutant alleles of the holin gene has been assessed quantitatively with respect to the scheduling of lysis. S mRNA accumulates during the late gene expression period to a final level of about 170 molecules per cell and is maintained at that level for at least the last 15 min before lysis. Total S protein synthesis, partitioned at about 2:1 in favor of the S105 protein compared with the other product, S107, accumulates to a final level of approximately 4,600 molecules per cell. The kinetics of accumulation of S is consistent with a constant translational rate of less than one S protein per mRNA per minute. Mutant alleles with alterations in the translational initiation region were studied to determine how the translational initiation region of S achieves the proper partition of initiation events at the two S start codons and how the synthesis of S105 and S107 relates to lysis timing. The results are discussed in terms of a model for the pathway by which the 30S ribosome-fMet-tRNA complex binds to the translational initiation region of S. In addition, analysis of the relationship between lysis timing and the levels of the two S gene products suggests that S107 inhibits S105, the lethal lysis effector, by a stoichiometric titration.

Full Text

The Full Text of this article is available as a PDF (557.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altman E., Altman R. K., Garrett J. M., Grimaila R. J., Young R. S gene product: identification and membrane localization of a lysis control protein. J Bacteriol. 1983 Sep;155(3):1130–1137. doi: 10.1128/jb.155.3.1130-1137.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Altman E., Young K., Garrett J., Altman R., Young R. Subcellular localization of lethal lysis proteins of bacteriophages lambda and phiX174. J Virol. 1985 Mar;53(3):1008–1011. doi: 10.1128/jvi.53.3.1008-1011.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Atkins J. F., Weiss R. B., Gesteland R. F. Ribosome gymnastics--degree of difficulty 9.5, style 10.0. Cell. 1990 Aug 10;62(3):413–423. doi: 10.1016/0092-8674(90)90007-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bienkowska-Szewczyk K., Lipinska B., Taylor A. The R gene product of bacteriophage lambda is the murein transglycosylase. Mol Gen Genet. 1981;184(1):111–114. doi: 10.1007/BF00271205. [DOI] [PubMed] [Google Scholar]
  5. Bläsi U., Chang C. Y., Zagotta M. T., Nam K. B., Young R. The lethal lambda S gene encodes its own inhibitor. EMBO J. 1990 Apr;9(4):981–989. doi: 10.1002/j.1460-2075.1990.tb08200.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bläsi U., Nam K., Hartz D., Gold L., Young R. Dual translational initiation sites control function of the lambda S gene. EMBO J. 1989 Nov;8(11):3501–3510. doi: 10.1002/j.1460-2075.1989.tb08515.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bonovich M. T., Young R. Dual start motif in two lambdoid S genes unrelated to lambda S. J Bacteriol. 1991 May;173(9):2897–2905. doi: 10.1128/jb.173.9.2897-2905.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Casjens S., Eppler K., Parr R., Poteete A. R. Nucleotide sequence of the bacteriophage P22 gene 19 to 3 region: identification of a new gene required for lysis. Virology. 1989 Aug;171(2):588–598. doi: 10.1016/0042-6822(89)90628-4. [DOI] [PubMed] [Google Scholar]
  9. Chang C. Y., Nam K., Bläsi U., Young R. Synthesis of two bacteriophage lambda S proteins in an in vivo system. Gene. 1993 Oct 29;133(1):9–16. doi: 10.1016/0378-1119(93)90218-r. [DOI] [PubMed] [Google Scholar]
  10. Daniels D. L., Blattner F. R. Nucleotide sequence of the Q gene and the Q to S intergenic region of bacteriophage lambda. Virology. 1982 Feb;117(1):81–92. doi: 10.1016/0042-6822(82)90509-8. [DOI] [PubMed] [Google Scholar]
  11. Daniels D. L., Subbarao M. N., Blattner F. R., Lozeron H. A. Q-mediated late gene transcription of bacteriophage lambda: RNA start point and RNase III processing sites in vivo. Virology. 1988 Dec;167(2):568–577. [PubMed] [Google Scholar]
  12. Del Campillo-Campbell A., Campbell A. Endolysin from mutants of bacteriophage lambda. Biochem Z. 1965 Aug 19;342(4):485–491. [PubMed] [Google Scholar]
  13. Garrett J. M., Young R. Lethal action of bacteriophage lambda S gene. J Virol. 1982 Dec;44(3):886–892. doi: 10.1128/jvi.44.3.886-892.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Garrett J., Bruno C., Young R. Lysis protein S of phage lambda functions in Saccharomyces cerevisiae. J Bacteriol. 1990 Dec;172(12):7275–7277. doi: 10.1128/jb.172.12.7275-7277.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Garrett J., Fusselman R., Hise J., Chiou L., Smith-Grillo D., Schulz J., Young R. Cell lysis by induction of cloned lambda lysis genes. Mol Gen Genet. 1981;182(2):326–331. doi: 10.1007/BF00269678. [DOI] [PubMed] [Google Scholar]
  16. Goldberg A. R., Howe M. New mutations in the S cistron of bacteriophage lambda affecting host cell lysis. Virology. 1969 May;38(1):200–202. doi: 10.1016/0042-6822(69)90148-2. [DOI] [PubMed] [Google Scholar]
  17. Johnson-Boaz R., Chang C. Y., Young R. A dominant mutation in the bacteriophage lambda S gene causes premature lysis and an absolute defective plating phenotype. Mol Microbiol. 1994 Aug;13(3):495–504. doi: 10.1111/j.1365-2958.1994.tb00444.x. [DOI] [PubMed] [Google Scholar]
  18. Lu M. J., Henning U. Lysis protein T of bacteriophage T4. Mol Gen Genet. 1992 Nov;235(2-3):253–258. doi: 10.1007/BF00279368. [DOI] [PubMed] [Google Scholar]
  19. Luk K. C., Szybalski W. Tandem transcription-termination sites in the late rightward operon of bacteriophage lambda. Mol Gen Genet. 1983;189(2):289–297. doi: 10.1007/BF00337819. [DOI] [PubMed] [Google Scholar]
  20. Nam K., Bläsi U., Zagotta M. T., Young R. Conservation of a dual-start motif in P22 lysis gene regulation. J Bacteriol. 1990 Jan;172(1):204–211. doi: 10.1128/jb.172.1.204-211.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ono T., Ohnishi Y. Degradation of ribosomal RNA in bacteriophage lambda lysogens after thermal induction. Microbiol Immunol. 1981;25(5):433–444. doi: 10.1111/j.1348-0421.1981.tb00046.x. [DOI] [PubMed] [Google Scholar]
  22. Raab R., Neal G., Sohaskey C., Smith J., Young R. Dominance in lambda S mutations and evidence for translational control. J Mol Biol. 1988 Jan 5;199(1):95–105. doi: 10.1016/0022-2836(88)90381-6. [DOI] [PubMed] [Google Scholar]
  23. Reader R. W., Siminovitch L. Lysis defective mutants of bacteriophage lambda: genetics and physiology of S cistron mutants. Virology. 1971 Mar;43(3):607–622. doi: 10.1016/0042-6822(71)90286-8. [DOI] [PubMed] [Google Scholar]
  24. Reader R. W., Siminovitch L. Lysis defective mutants of bacteriophage lambda: on the role of the S function in lysis. Virology. 1971 Mar;43(3):623–637. doi: 10.1016/0042-6822(71)90287-x. [DOI] [PubMed] [Google Scholar]
  25. Remaut E., Stanssens P., Fiers W. Plasmid vectors for high-efficiency expression controlled by the PL promoter of coliphage lambda. Gene. 1981 Oct;15(1):81–93. doi: 10.1016/0378-1119(81)90106-2. [DOI] [PubMed] [Google Scholar]
  26. Rennell D., Poteete A. R. Phage P22 lysis genes: nucleotide sequences and functional relationships with T4 and lambda genes. Virology. 1985 May;143(1):280–289. doi: 10.1016/0042-6822(85)90115-1. [DOI] [PubMed] [Google Scholar]
  27. Roberts J. W. RNA and protein elements of E. coli and lambda transcription antitermination complexes. Cell. 1993 Mar 12;72(5):653–655. doi: 10.1016/0092-8674(93)90394-6. [DOI] [PubMed] [Google Scholar]
  28. Roberts J. W. Transcription termination and late control in phage lambda. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3300–3304. doi: 10.1073/pnas.72.9.3300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rolfe B. G., Campbell J. H. Genetic and physiological control of host cell lysis by bacteriophage lambda. J Virol. 1977 Sep;23(3):626–636. doi: 10.1128/jvi.23.3.626-636.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  31. Shine J., Dalgarno L. The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1342–1346. doi: 10.1073/pnas.71.4.1342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Spedding G., Gluick T. C., Draper D. E. Ribosome initiation complex formation with the pseudoknotted alpha operon messenger RNA. J Mol Biol. 1993 Feb 5;229(3):609–622. doi: 10.1006/jmbi.1993.1067. [DOI] [PubMed] [Google Scholar]
  33. Steiner M., Bläsi U. Charged amino-terminal amino acids affect the lethal capacity of Lambda lysis proteins S107 and S105. Mol Microbiol. 1993 May;8(3):525–533. doi: 10.1111/j.1365-2958.1993.tb01597.x. [DOI] [PubMed] [Google Scholar]
  34. Steiner M., Lubitz W., Bläsi U. The missing link in phage lysis of gram-positive bacteria: gene 14 of Bacillus subtilis phage phi 29 encodes the functional homolog of lambda S protein. J Bacteriol. 1993 Feb;175(4):1038–1042. doi: 10.1128/jb.175.4.1038-1042.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Winterbourne D. J. Chemical assays for proteins. Methods Mol Biol. 1993;19:197–202. doi: 10.1385/0-89603-236-1:197. [DOI] [PubMed] [Google Scholar]
  37. Yang X. J., Goliger J. A., Roberts J. W. Specificity and mechanism of antitermination by Q proteins of bacteriophages lambda and 82. J Mol Biol. 1989 Dec 5;210(3):453–460. doi: 10.1016/0022-2836(89)90122-8. [DOI] [PubMed] [Google Scholar]
  38. Young R. Bacteriophage lysis: mechanism and regulation. Microbiol Rev. 1992 Sep;56(3):430–481. doi: 10.1128/mr.56.3.430-481.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Young R., Bremer H. Analysis of enzyme induction in bacteria. Biochem J. 1975 Nov;152(2):243–254. doi: 10.1042/bj1520243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Young R., Smith Grillo D., Isberg R., Way J., Syvanen M. Transposition of the kanamycin-resistance transposon Tn903. Mol Gen Genet. 1980;178(3):681–689. doi: 10.1007/BF00337879. [DOI] [PubMed] [Google Scholar]
  41. Young R., Way J., Way S., Yin J., Syvanen M. Transposition mutagenesis of bacteriophage lambda: a new gene affecting cell lysis. J Mol Biol. 1979 Aug 15;132(3):307–322. doi: 10.1016/0022-2836(79)90262-6. [DOI] [PubMed] [Google Scholar]
  42. Zagotta M. T., Wilson D. B. Oligomerization of the bacteriophage lambda S protein in the inner membrane of Escherichia coli. J Bacteriol. 1990 Feb;172(2):912–921. doi: 10.1128/jb.172.2.912-921.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES