Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Jun;177(11):3347–3350. doi: 10.1128/jb.177.11.3347-3350.1995

Isolation and characterization of an Escherichia coli seryl-tRNA synthetase mutant with a large increase in Km for serine.

J C Willison 1, M Härtlein 1, R Leberman 1
PMCID: PMC177033  PMID: 7768840

Abstract

A mutant of Escherichia coli resistant to serine hydroxamate which has a large increase in Km for serine of seryl-tRNA synthetase is described. The mutant serS gene was cloned and sequenced and was found to contain a single-base-pair mutation, resulting in the substitution of the residue alanine 262 by valine in motif 2. The methyl side chain of alanine 262 is not exposed at the active site, and molecular modeling indicated that replacement of alanine 262 by valine does not significantly affect the configuration of amino acids at the active site. This finding suggests that the residue at this position may be involved in a conformational change (possibly induced by ATP binding) which is necessary for optimal binding of the cognate amino acid.

Full Text

The Full Text of this article is available as a PDF (238.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen K. B., von Meyenburg K. Are growth rates of Escherichia coli in batch cultures limited by respiration? J Bacteriol. 1980 Oct;144(1):114–123. doi: 10.1128/jb.144.1.114-123.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Belrhali H., Yaremchuk A., Tukalo M., Larsen K., Berthet-Colominas C., Leberman R., Beijer B., Sproat B., Als-Nielsen J., Grübel G. Crystal structures at 2.5 angstrom resolution of seryl-tRNA synthetase complexed with two analogs of seryl adenylate. Science. 1994 Mar 11;263(5152):1432–1436. doi: 10.1126/science.8128224. [DOI] [PubMed] [Google Scholar]
  3. Cusack S., Berthet-Colominas C., Härtlein M., Nassar N., Leberman R. A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 A. Nature. 1990 Sep 20;347(6290):249–255. doi: 10.1038/347249a0. [DOI] [PubMed] [Google Scholar]
  4. Cusack S., Härtlein M., Leberman R. Sequence, structural and evolutionary relationships between class 2 aminoacyl-tRNA synthetases. Nucleic Acids Res. 1991 Jul 11;19(13):3489–3498. doi: 10.1093/nar/19.13.3489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eriani G., Delarue M., Poch O., Gangloff J., Moras D. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature. 1990 Sep 13;347(6289):203–206. doi: 10.1038/347203a0. [DOI] [PubMed] [Google Scholar]
  6. Hill R. J., Konigsberg W. Mutation in the structural gene for seryl-transfer ribonucleic acid synthetase of Escherichia coli which affects formation of its gene product at high temperature. J Bacteriol. 1980 Mar;141(3):1163–1169. doi: 10.1128/jb.141.3.1163-1169.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Härtlein M., Madern D. Molecular cloning and nucleotide sequence of the gene for Escherichia coli leucyl-tRNA synthetase. Nucleic Acids Res. 1987 Dec 23;15(24):10199–10210. doi: 10.1093/nar/15.24.10199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kast P., Hennecke H. Amino acid substrate specificity of Escherichia coli phenylalanyl-tRNA synthetase altered by distinct mutations. J Mol Biol. 1991 Nov 5;222(1):99–124. doi: 10.1016/0022-2836(91)90740-w. [DOI] [PubMed] [Google Scholar]
  9. Kast P., Wehrli C., Hennecke H. Impaired affinity for phenylalanine in Escherichia coli phenylalanyl-tRNA synthetase mutant caused by Gly-to-Asp exchange in motif 2 of class II tRNA synthetases. FEBS Lett. 1991 Nov 18;293(1-2):160–163. doi: 10.1016/0014-5793(91)81176-9. [DOI] [PubMed] [Google Scholar]
  10. Low B., Gates F., Goldstein T., Söll D. Isolation and partial characterization of temperature-sensitive Escherichia coli mutants with altered leucyl- and seryl-transfer ribonucleic acid synthetases. J Bacteriol. 1971 Nov;108(2):742–750. doi: 10.1128/jb.108.2.742-750.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Madern D., Anselme J., Härtlein M. Asparaginyl-tRNA synthetase from the Escherichia coli temperature-sensitive strain HO202. A proline replacement in motif 2 is responsible for a large increase in Km for asparagine and ATP. FEBS Lett. 1992 Mar 24;299(1):85–89. doi: 10.1016/0014-5793(92)80106-q. [DOI] [PubMed] [Google Scholar]
  12. Price S., Cusack S., Borel F., Berthet-Colominas C., Leberman R. Crystallization of the seryl-tRNA synthetase:tRNAS(ser) complex of Escherichia coli. FEBS Lett. 1993 Jun 14;324(2):167–170. doi: 10.1016/0014-5793(93)81386-e. [DOI] [PubMed] [Google Scholar]
  13. Remaut E., Stanssens P., Fiers W. Plasmid vectors for high-efficiency expression controlled by the PL promoter of coliphage lambda. Gene. 1981 Oct;15(1):81–93. doi: 10.1016/0378-1119(81)90106-2. [DOI] [PubMed] [Google Scholar]
  14. Tosa T., Pizer L. I. Biochemical bases for the antimetabolite action of L-serine hydroxamate. J Bacteriol. 1971 Jun;106(3):972–982. doi: 10.1128/jb.106.3.972-982.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Tosa T., Pizer L. I. Effect of serine hydroxamate on the growth of Escherichia coli. J Bacteriol. 1971 Jun;106(3):966–971. doi: 10.1128/jb.106.3.966-971.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wells T. N., Knill-Jones J. W., Gray T. E., Fersht A. R. Kinetic and thermodynamic properties of wild-type and engineered mutants of tyrosyl-tRNA synthetase analyzed by pyrophosphate-exchange kinetics. Biochemistry. 1991 May 28;30(21):5151–5156. doi: 10.1021/bi00235a006. [DOI] [PubMed] [Google Scholar]
  17. de Prat Gay G., Duckworth H. W., Fersht A. R. Modification of the amino acid specificity of tyrosyl-tRNA synthetase by protein engineering. FEBS Lett. 1993 Mar 1;318(2):167–171. doi: 10.1016/0014-5793(93)80014-l. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES