Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Jun;177(12):3379–3385. doi: 10.1128/jb.177.12.3379-3385.1995

Production and reutilization of an extracellular phosphatidylinositol catabolite, glycerophosphoinositol, by Saccharomyces cerevisiae.

J L Patton 1, L Pessoa-Brandao 1, S A Henry 1
PMCID: PMC177039  PMID: 7768846

Abstract

Phosphatidylinositol catabolism in Saccharomyces cerevisiae is known to result in the formation of extracellular glycerophosphoinositol (GroPIns). We now report that S. cerevisiae not only produces but also reutilizes extracellular GroPIns and that these processes are regulated in response to inositol availability. A wild-type strain uniformly prelabeled with [3H] inositol displayed dramatically higher extracellular GroPIns levels when cultured in medium containing inositol than when cultured in medium lacking inositol. This difference in extracellular accumulation of GroPIns in response to inositol availability was shown to be a result of both regulated production and regulated reutilization. In a strain in which a negative regulator of phospholipid and inositol biosynthesis had been deleted (an opi1 mutant), this pattern of extracellular GroPIns accumulation in response to inositol availability was altered. An inositol permease mutant (itr1 itr2), which is unable to transport free inositol, was able to incorporate label from exogenous glycerophospho [3H]inositol, indicating that the inositol label did not enter the cell solely via the transporters encoded by itr1 and itr2. Kinetic studies of a wild-type strain and an itr1 itr2 mutant strain revealed that at least two mechanisms exist for the utilization of exogenous GroPIns: an inositol transporter-dependent mechanism and an inositol transporter-independent mechanism. The inositol transporter-independent pathway of exogenous GroPIns utilization displayed saturation kinetics and was energy dependent. Labeling studies employing [14C]glycerophospho[3H] inositol indicated that, while GroPIns enters the cell intact, the inositol moiety but not the glycerol moiety is incorporated into lipids.

Full Text

The Full Text of this article is available as a PDF (302.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angus W. W., Lester R. L. The regulated catabolism of endogenous and exogenous phosphatidylinositol by Saccharomyces cerevisiae leading to extracellular glycerophosphorylinositol and inositol. J Biol Chem. 1975 Jan 10;250(1):22–30. [PubMed] [Google Scholar]
  2. Angus W. W., Lester R. L. Turnover of inositol and phosphorus containing lipids in Saccharomyces cerevisiae; extracellular accumulation of glycerophosphorylinositol derived from phosphatidylinositol. Arch Biochem Biophys. 1972 Aug;151(2):483–495. doi: 10.1016/0003-9861(72)90525-5. [DOI] [PubMed] [Google Scholar]
  3. Ballarin-Denti A., Den Hollander J. A., Sanders D., Slayman C. W., Slayman C. L. Kinetics and pH-dependence of glycine-proton symport in Saccharomyces cerevisiae. Biochim Biophys Acta. 1984 Nov 21;778(1):1–16. doi: 10.1016/0005-2736(84)90442-5. [DOI] [PubMed] [Google Scholar]
  4. Becker G. W., Lester R. L. Biosynthesis of phosphoinositol-containing sphingolipids from phosphatidylinositol by a membrane preparation from Saccharomyces cerevisiae. J Bacteriol. 1980 Jun;142(3):747–754. doi: 10.1128/jb.142.3.747-754.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berridge M. J., Dawson R. M., Downes C. P., Heslop J. P., Irvine R. F. Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem J. 1983 May 15;212(2):473–482. doi: 10.1042/bj2120473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brzoska P., Boos W. Characteristics of a ugp-encoded and phoB-dependent glycerophosphoryl diester phosphodiesterase which is physically dependent on the ugp transport system of Escherichia coli. J Bacteriol. 1988 Sep;170(9):4125–4135. doi: 10.1128/jb.170.9.4125-4135.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carman G. M., Henry S. A. Phospholipid biosynthesis in yeast. Annu Rev Biochem. 1989;58:635–669. doi: 10.1146/annurev.bi.58.070189.003223. [DOI] [PubMed] [Google Scholar]
  8. Hanson B. A., Lester R. L. The extraction of inositol-containing phospholipids and phosphatidylcholine from Saccharomyces cerevisiae and Neurospora crassa. J Lipid Res. 1980 Mar;21(3):309–315. [PubMed] [Google Scholar]
  9. Hawkins P. T., Stephens L. R., Piggott J. R. Analysis of inositol metabolites produced by Saccharomyces cerevisiae in response to glucose stimulation. J Biol Chem. 1993 Feb 15;268(5):3374–3383. [PubMed] [Google Scholar]
  10. Hirsch J. P., Henry S. A. Expression of the Saccharomyces cerevisiae inositol-1-phosphate synthase (INO1) gene is regulated by factors that affect phospholipid synthesis. Mol Cell Biol. 1986 Oct;6(10):3320–3328. doi: 10.1128/mcb.6.10.3320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ichimasa M., Morooka T., Niimura T. Purification and properties of a membrane-bound phospholipase B from baker's yeast (Saccharomyces cerevisiae). J Biochem. 1984 Jan;95(1):137–145. [PubMed] [Google Scholar]
  12. Lai K., McGraw P. Dual control of inositol transport in Saccharomyces cerevisiae by irreversible inactivation of permease and regulation of permease synthesis by INO2, INO4, and OPI1. J Biol Chem. 1994 Jan 21;269(3):2245–2251. [PubMed] [Google Scholar]
  13. Lee K. S., Patton J. L., Fido M., Hines L. K., Kohlwein S. D., Paltauf F., Henry S. A., Levin D. E. The Saccharomyces cerevisiae PLB1 gene encodes a protein required for lysophospholipase and phospholipase B activity. J Biol Chem. 1994 Aug 5;269(31):19725–19730. [PubMed] [Google Scholar]
  14. Lester R. L., Steiner M. R. The occurrence of diphosphoinositide and triphosphoinositide in Saccharomyces cerevisiae. J Biol Chem. 1968 Sep 25;243(18):4889–4893. [PubMed] [Google Scholar]
  15. Lester R. L., Wells G. B., Oxford G., Dickson R. C. Mutant strains of Saccharomyces cerevisiae lacking sphingolipids synthesize novel inositol glycerophospholipids that mimic sphingolipid structures. J Biol Chem. 1993 Jan 15;268(2):845–856. [PubMed] [Google Scholar]
  16. Nikawa J., Nagumo T., Yamashita S. Myo-inositol transport in Saccharomyces cerevisiae. J Bacteriol. 1982 May;150(2):441–446. doi: 10.1128/jb.150.2.441-446.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nikawa J., Tsukagoshi Y., Yamashita S. Isolation and characterization of two distinct myo-inositol transporter genes of Saccharomyces cerevisiae. J Biol Chem. 1991 Jun 15;266(17):11184–11191. [PubMed] [Google Scholar]
  18. Paltauf F., Zinser E., Daum G. Utilization of exogenous glycerophosphodiesters and glycerol 3-phosphate by inositol-starved yeast, Saccharomyces uvarum. Biochim Biophys Acta. 1985 Jul 9;835(2):322–330. doi: 10.1016/0005-2760(85)90288-7. [DOI] [PubMed] [Google Scholar]
  19. White M. J., Hirsch J. P., Henry S. A. The OPI1 gene of Saccharomyces cerevisiae, a negative regulator of phospholipid biosynthesis, encodes a protein containing polyglutamine tracts and a leucine zipper. J Biol Chem. 1991 Jan 15;266(2):863–872. [PubMed] [Google Scholar]
  20. White M. J., Lopes J. M., Henry S. A. Inositol metabolism in yeasts. Adv Microb Physiol. 1991;32:1–51. doi: 10.1016/s0065-2911(08)60004-1. [DOI] [PubMed] [Google Scholar]
  21. Witt W., Brüller H. J., Falker G., Fuhrmann G. F. Purification and properties of a phospholipid acyl hydrolase from plasma membranes of Saccharomyces cerevisiae. Biochim Biophys Acta. 1982 Jun 11;711(3):403–410. doi: 10.1016/0005-2760(82)90054-6. [DOI] [PubMed] [Google Scholar]
  22. Witt W., Mertsching A., König E. Secretion of phospholipase B from Saccharomyces cerevisiae. Biochim Biophys Acta. 1984 Aug 15;795(1):117–124. doi: 10.1016/0005-2760(84)90111-5. [DOI] [PubMed] [Google Scholar]
  23. Witt W., Schweingruber M. E., Mertsching A. Phospholipase B from the plasma membrane of Saccharomyces cerevisiae. Separation of two forms with different carbohydrate content. Biochim Biophys Acta. 1984 Aug 15;795(1):108–116. doi: 10.1016/0005-2760(84)90110-3. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES