Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Jun;177(12):3527–3533. doi: 10.1128/jb.177.12.3527-3533.1995

ADP-ribosylation of glutamine synthetase in the cyanobacterium Synechocystis sp. strain PCC 6803.

N J Silman 1, N G Carr 1, N H Mann 1
PMCID: PMC177058  PMID: 7768863

Abstract

Glutamine synthetase (GS) inactivation was observed in crude cell extracts and in the high-speed supernatant fraction from the cyanobacterium Synechocystis sp. strain PCC 6803 following the addition of ammonium ions, glutamine, or glutamate. Dialysis of the high-speed supernatant resulted in loss of inactivation activity, but this could be restored by the addition of NADH, NADPH, or NADP+ and, to a lesser extent, NAD+, suggesting that inactivation of GS involved ADP-ribosylation. This form of modification was confirmed both by labelling experiments using [32P]NAD+ and by chemical analysis of the hydrolyzed enzyme. Three different forms of GS, exhibiting no activity, biosynthetic activity only, or transferase activity only, could be resolved by chromatography, and the differences in activity were correlated with the extent of the modification. Both biosynthetic and transferase activities were restored to the completely inactive form of GS by treatment with phosphodiesterase.

Full Text

The Full Text of this article is available as a PDF (373.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bloye S. A., Silman N. J., Mann N. H., Carr N. G. Bicarbonate Concentration by Synechocystis PCC6803 : Modulation of Protein Phosphorylation and Inorganic Carbon Transport by Glucose. Plant Physiol. 1992 Jun;99(2):601–606. doi: 10.1104/pp.99.2.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Eastman D., Dworkin M. Endogenous ADP-ribosylation during development of the prokaryote Myxococcus xanthus. Microbiology. 1994 Nov;140(Pt 11):3167–3176. doi: 10.1099/13500872-140-11-3167. [DOI] [PubMed] [Google Scholar]
  3. Fisher R., Tuli R., Haselkorn R. A cloned cyanobacterial gene for glutamine synthetase functions in Escherichia coli, but the enzyme is not adenylylated. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3393–3397. doi: 10.1073/pnas.78.6.3393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Forchhammer K., Tandeau de Marsac N. The PII protein in the cyanobacterium Synechococcus sp. strain PCC 7942 is modified by serine phosphorylation and signals the cellular N-status. J Bacteriol. 1994 Jan;176(1):84–91. doi: 10.1128/jb.176.1.84-91.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Joseph C. M., Meeks J. C. Regulation of expression of glutamine synthetase in a symbiotic Nostoc strain associated with Anthoceros punctatus. J Bacteriol. 1987 Jun;169(6):2471–2475. doi: 10.1128/jb.169.6.2471-2475.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kanemoto R. H., Ludden P. W. Effect of ammonia, darkness, and phenazine methosulfate on whole-cell nitrogenase activity and Fe protein modification in Rhodospirillum rubrum. J Bacteriol. 1984 May;158(2):713–720. doi: 10.1128/jb.158.2.713-720.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Liu Y., Kahn M. L. ADP-ribosylation of Rhizobium meliloti glutamine synthetase III in vivo. J Biol Chem. 1995 Jan 27;270(4):1624–1628. doi: 10.1074/jbc.270.4.1624. [DOI] [PubMed] [Google Scholar]
  8. Lowery R. G., Saari L. L., Ludden P. W. Reversible regulation of the nitrogenase iron protein from Rhodospirillum rubrum by ADP-ribosylation in vitro. J Bacteriol. 1986 May;166(2):513–518. doi: 10.1128/jb.166.2.513-518.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ludden P. W., Burris R. H. Purification and properties of nitrogenase from Rhodospirillum rubrum, and evidence for phosphate, ribose and an adenine-like unit covalently bound to the iron protein. Biochem J. 1978 Oct 1;175(1):251–259. doi: 10.1042/bj1750251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Magasanik B. Reversible phosphorylation of an enhancer binding protein regulates the transcription of bacterial nitrogen utilization genes. Trends Biochem Sci. 1988 Dec;13(12):475–479. doi: 10.1016/0968-0004(88)90234-4. [DOI] [PubMed] [Google Scholar]
  11. Moss J., Stanley S. J., Levine R. L. Inactivation of bacterial glutamine synthetase by ADP-ribosylation. J Biol Chem. 1990 Dec 5;265(34):21056–21060. [PubMed] [Google Scholar]
  12. Mérida A., Candau P., Florencio F. J. In vitro reactivation of in vivo ammonium-inactivated glutamine synthetase from Synechocystis sp. PCC 6803. Biochem Biophys Res Commun. 1991 Dec 16;181(2):780–786. doi: 10.1016/0006-291x(91)91258-e. [DOI] [PubMed] [Google Scholar]
  13. Mérida A., Candau P., Florencio F. J. Regulation of glutamine synthetase activity in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 by the nitrogen source: effect of ammonium. J Bacteriol. 1991 Jul;173(13):4095–4100. doi: 10.1128/jb.173.13.4095-4100.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mérida A., Leurentop L., Candau P., Florencio F. J. Purification and properties of glutamine synthetases from the cyanobacteria Synechocystis sp. strain PCC 6803 and Calothrix sp. strain PCC 7601. J Bacteriol. 1990 Aug;172(8):4732–4735. doi: 10.1128/jb.172.8.4732-4735.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ochi K., Penyige A., Barabas G. The possible role of ADP-ribosylation in sporulation and streptomycin production by Streptomyces griseus. J Gen Microbiol. 1992 Aug;138(Pt 8):1745–1750. doi: 10.1099/00221287-138-8-1745. [DOI] [PubMed] [Google Scholar]
  16. Orr J., Haselkorn R. Kinetic and inhibition studies of glutamine synthetase from the cyanobacterium Anabaena 7120. J Biol Chem. 1981 Dec 25;256(24):13099–13104. [PubMed] [Google Scholar]
  17. Pope M. R., Murrell S. A., Ludden P. W. Covalent modification of the iron protein of nitrogenase from Rhodospirillum rubrum by adenosine diphosphoribosylation of a specific arginine residue. Proc Natl Acad Sci U S A. 1985 May;82(10):3173–3177. doi: 10.1073/pnas.82.10.3173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Reyes J. C., Florencio F. J. A new type of glutamine synthetase in cyanobacteria: the protein encoded by the glnN gene supports nitrogen assimilation in Synechocystis sp. strain PCC 6803. J Bacteriol. 1994 Mar;176(5):1260–1267. doi: 10.1128/jb.176.5.1260-1267.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Stacey G., Van Baalen C., Tabita F. R. Nitrogen and ammonia assimilation in the cyanobacteria: regulation of glutamine synthetase. Arch Biochem Biophys. 1979 May;194(2):457–467. doi: 10.1016/0003-9861(79)90640-4. [DOI] [PubMed] [Google Scholar]
  20. Tsinoremas N. F., Castets A. M., Harrison M. A., Allen J. F., Tandeau de Marsac N. Photosynthetic electron transport controls nitrogen assimilation in cyanobacteria by means of posttranslational modification of the glnB gene product. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4565–4569. doi: 10.1073/pnas.88.11.4565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tuli R., Thomas J. In vivo regulation of glutamine synthetase by ammonium in the cyanobacterium Anabaena L-31. Arch Biochem Biophys. 1981 Jan;206(1):181–189. doi: 10.1016/0003-9861(81)90079-5. [DOI] [PubMed] [Google Scholar]
  22. Woehle D. L., Lueddecke B. A., Ludden P. W. ATP-dependent and NAD-dependent modification of glutamine synthetase from Rhodospirillum rubrum in vitro. J Biol Chem. 1990 Aug 15;265(23):13741–13749. [PubMed] [Google Scholar]
  23. Woods D. R., Reid S. J. Recent developments on the regulation and structure of glutamine synthetase enzymes from selected bacterial groups. FEMS Microbiol Rev. 1993 Aug;11(4):273–283. doi: 10.1111/j.1574-6976.1993.tb00001.x. [DOI] [PubMed] [Google Scholar]
  24. Yuki H., Sempuku C., Park M., Takiura K. Fluorometric determination of adenine and its derivatives by reaction with glyoxal hydrate trimer. Anal Biochem. 1972 Mar;46(1):123–128. doi: 10.1016/0003-2697(72)90403-4. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES