Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Jun;177(12):3534–3539. doi: 10.1128/jb.177.12.3534-3539.1995

Oxidative cell wall damage mediated by bleomycin-Fe(II) in Saccharomyces cerevisiae.

S T Lim 1, C K Jue 1, C W Moore 1, P N Lipke 1
PMCID: PMC177059  PMID: 7539421

Abstract

Bleomycin mediates cell wall damage in the yeast Saccharomyces cerevisiae. Bleomycin treatments in the presence of Fe(II) increased the rate of spheroplast formation by lytic enzymes by 5- to 40-fold. Neither Fe(III) nor other tested ions caused significant cell wall damage in the presence of bleomycin. The effect of bleomycin-Fe(II) on the cell wall mimicked the characteristics of bleomycin-Fe(II)-mediated DNA damage in dependence on aeration, inhibition by ascorbate, and potentiation by submillimolar concentrations of sodium phosphate. Bleomycin-mediated cell wall damage was time and dose dependent, with incubations as short as 20 min and drug concentrations as low as 3.3 x 10(-7)M causing measurable cell wall damage in strain CM1069-40. These times and concentrations are within the range of effectiveness for bleomycin-mediated DNA damage and for the cytotoxicity of the drug. Although Fe(III) was inactive with bleomycin and O2, the bleomycin-Fe(III) complex damaged walls and lysed cells in the presence of H2O2. H2O2 causes similar activation of bleomycin-Fe(III) in assays of DNA scission. These results suggest that an activated bleomycin-Fe-O2 complex disrupts essential cell wall polymers in a manner analogous to bleomycin-mediated cleavage of DNA.

Full Text

The Full Text of this article is available as a PDF (289.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beaudouin R., Lim S. T., Steide J. A., Powell M., McKoy J., Pramanik A. J., Johnson E., Moore C. W., Lipke P. N. Bleomycin affects cell wall anchorage of mannoproteins in Saccharomyces cerevisiae. Antimicrob Agents Chemother. 1993 Jun;37(6):1264–1269. doi: 10.1128/aac.37.6.1264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boone C., Sommer S. S., Hensel A., Bussey H. Yeast KRE genes provide evidence for a pathway of cell wall beta-glucan assembly. J Cell Biol. 1990 May;110(5):1833–1843. doi: 10.1083/jcb.110.5.1833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Buettner G. R., Moseley P. L. Ascorbate both activates and inactivates bleomycin by free radical generation. Biochemistry. 1992 Oct 13;31(40):9784–9788. doi: 10.1021/bi00155a035. [DOI] [PubMed] [Google Scholar]
  4. Burger R. M., Berkowitz A. R., Peisach J., Horwitz S. B. Origin of malondialdehyde from DNA degraded by Fe(II) x bleomycin. J Biol Chem. 1980 Dec 25;255(24):11832–11838. [PubMed] [Google Scholar]
  5. Burger R. M., Horwitz S. B., Peisach J. Stimulation of iron(II) bleomycin activity by phosphate-containing compounds. Biochemistry. 1985 Jul 2;24(14):3623–3629. doi: 10.1021/bi00335a034. [DOI] [PubMed] [Google Scholar]
  6. Burger R. M., Horwitz S. B., Peisach J., Wittenberg J. B. Oxygenated iron bleomycin. A short-lived intermediate in the reaction of ferrous bleomycin with O2. J Biol Chem. 1979 Dec 25;254(24):12999–12302. [PubMed] [Google Scholar]
  7. Burger R. M., Kent T. A., Horwitz S. B., Münck E., Peisach J. Mössbauer study of iron bleomycin and its activation intermediates. J Biol Chem. 1983 Feb 10;258(3):1559–1564. [PubMed] [Google Scholar]
  8. Burger R. M., Peisach J., Horwitz S. B. Activated bleomycin. A transient complex of drug, iron, and oxygen that degrades DNA. J Biol Chem. 1981 Nov 25;256(22):11636–11644. [PubMed] [Google Scholar]
  9. Burger R. M., Peisach J., Horwitz S. B. Effects of O2 on the reactions of activated bleomycin. J Biol Chem. 1982 Apr 10;257(7):3372–3375. [PubMed] [Google Scholar]
  10. Cabib E., Roberts R., Bowers B. Synthesis of the yeast cell wall and its regulation. Annu Rev Biochem. 1982;51:763–793. doi: 10.1146/annurev.bi.51.070182.003555. [DOI] [PubMed] [Google Scholar]
  11. Frevert J., Ballou C. E. Saccharomyces cerevisiae structural cell wall mannoprotein. Biochemistry. 1985 Jan 29;24(3):753–759. doi: 10.1021/bi00324a033. [DOI] [PubMed] [Google Scholar]
  12. Giloni L., Takeshita M., Johnson F., Iden C., Grollman A. P. Bleomycin-induced strand-scission of DNA. Mechanism of deoxyribose cleavage. J Biol Chem. 1981 Aug 25;256(16):8608–8615. [PubMed] [Google Scholar]
  13. Holmes C. E., Carter B. J., Hecht S. M. Characterization of iron (II).bleomycin-mediated RNA strand scission. Biochemistry. 1993 Apr 27;32(16):4293–4307. doi: 10.1021/bi00067a019. [DOI] [PubMed] [Google Scholar]
  14. Hüttenhofer A., Hudson S., Noller H. F., Mascharak P. K. Cleavage of tRNA by Fe(II)-bleomycin. J Biol Chem. 1992 Dec 5;267(34):24471–24475. [PubMed] [Google Scholar]
  15. Kikuchi H., Tetsuka T. On the mechanism of lipoxygenase-like action of bleomycin-iron complexes. J Antibiot (Tokyo) 1992 Apr;45(4):548–555. doi: 10.7164/antibiotics.45.548. [DOI] [PubMed] [Google Scholar]
  16. Kitamura K., Yamamoto Y. Purification and properties of an enzyme, zymolyase, which lyses viable yeast cells. Arch Biochem Biophys. 1972 Nov;153(1):403–406. doi: 10.1016/0003-9861(72)90461-4. [DOI] [PubMed] [Google Scholar]
  17. Klebl F., Tanner W. Molecular cloning of a cell wall exo-beta-1,3-glucanase from Saccharomyces cerevisiae. J Bacteriol. 1989 Nov;171(11):6259–6264. doi: 10.1128/jb.171.11.6259-6264.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Klis F. M. Review: cell wall assembly in yeast. Yeast. 1994 Jul;10(7):851–869. doi: 10.1002/yea.320100702. [DOI] [PubMed] [Google Scholar]
  19. Kuramochi H., Takahashi K., Takita T., Umezawa H. An active intermediate formed in the reaction of bleomycin-Fe(II) complex with oxygen. J Antibiot (Tokyo) 1981 May;34(5):576–582. doi: 10.7164/antibiotics.34.576. [DOI] [PubMed] [Google Scholar]
  20. Lipke P. N., Taylor A., Ballou C. E. Morphogenic effects of alpha-factor on Saccharomyces cerevisiae a cells. J Bacteriol. 1976 Jul;127(1):610–618. doi: 10.1128/jb.127.1.610-618.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lu C. F., Montijn R. C., Brown J. L., Klis F., Kurjan J., Bussey H., Lipke P. N. Glycosyl phosphatidylinositol-dependent cross-linking of alpha-agglutinin and beta 1,6-glucan in the Saccharomyces cerevisiae cell wall. J Cell Biol. 1995 Feb;128(3):333–340. doi: 10.1083/jcb.128.3.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Montijn R. C., van Rinsum J., van Schagen F. A., Klis F. M. Glucomannoproteins in the cell wall of Saccharomyces cerevisiae contain a novel type of carbohydrate side chain. J Biol Chem. 1994 Jul 29;269(30):19338–19342. [PubMed] [Google Scholar]
  23. Moore C. W. Control of in vivo (cellular) phleomycin sensitivity by nuclear genotype, growth phase, and metal ions. Cancer Res. 1982 Mar;42(3):929–933. [PubMed] [Google Scholar]
  24. Moore C. W., Del Valle R., McKoy J., Pramanik A., Gordon R. E. Lesions and preferential initial localization of [S-methyl-3H]bleomycin A2 on Saccharomyces cerevisiae cell walls and membranes. Antimicrob Agents Chemother. 1992 Nov;36(11):2497–2505. doi: 10.1128/aac.36.11.2497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Moore C. W., Jones C. S., Wall L. A. Growth phase dependency of chromatin cleavage and degradation by bleomycin. Antimicrob Agents Chemother. 1989 Sep;33(9):1592–1599. doi: 10.1128/aac.33.9.1592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Moore C. W. Modulation of bleomycin cytotoxicity. Antimicrob Agents Chemother. 1982 Apr;21(4):595–600. doi: 10.1128/aac.21.4.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Moore C. W. Potentiation of bleomycin cytotoxicity in Saccharomyces cerevisiae. Antimicrob Agents Chemother. 1994 Jul;38(7):1615–1619. doi: 10.1128/aac.38.7.1615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nakamura M., Peisach J. Self-inactivation of Fe(II)-bleomycin. J Antibiot (Tokyo) 1988 May;41(5):638–647. doi: 10.7164/antibiotics.41.638. [DOI] [PubMed] [Google Scholar]
  29. Necas O. Cell wall synthesis in yeast protoplasts. Bacteriol Rev. 1971 Jun;35(2):149–170. doi: 10.1128/br.35.2.149-170.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Petering D. H., Byrnes R. W., Antholine W. E. The role of redox-active metals in the mechanism of action of bleomycin. Chem Biol Interact. 1990;73(2-3):133–182. doi: 10.1016/0009-2797(90)90001-4. [DOI] [PubMed] [Google Scholar]
  31. Pohl H., Reidy J. A. Vitamin C intake influences the bleomycin-induced chromosome damage assay: implications for detection of cancer susceptibility and chromosome breakage syndromes. Mutat Res. 1989 Oct;224(2):247–252. doi: 10.1016/0165-1218(89)90163-8. [DOI] [PubMed] [Google Scholar]
  32. Sam J. W., Peisach J. EPR spectroscopic investigation of the lability of oxygen in activated bleomycin: implications for the mechanism of bleomycin-mediated DNA degradation. Biochemistry. 1993 Feb 16;32(6):1488–1491. doi: 10.1021/bi00057a012. [DOI] [PubMed] [Google Scholar]
  33. Sausville E. A., Peisach J., Horwitz S. B. Effect of chelating agents and metal ions on the degradation of DNA by bleomycin. Biochemistry. 1978 Jul 11;17(14):2740–2746. doi: 10.1021/bi00607a007. [DOI] [PubMed] [Google Scholar]
  34. Sausville E. A., Stein R. W., Peisach J., Horwitz S. B. Properties and products of the degradation of DNA by bleomycin and iron(II). Biochemistry. 1978 Jul 11;17(14):2746–2754. doi: 10.1021/bi00607a008. [DOI] [PubMed] [Google Scholar]
  35. Schreuder M. P., Brekelmans S., van den Ende H., Klis F. M. Targeting of a heterologous protein to the cell wall of Saccharomyces cerevisiae. Yeast. 1993 Apr;9(4):399–409. doi: 10.1002/yea.320090410. [DOI] [PubMed] [Google Scholar]
  36. Tammi M., Ballou L., Taylor A., Ballou C. E. Effect of glycosylation on yeast invertase oligomer stability. J Biol Chem. 1987 Mar 25;262(9):4395–4401. [PubMed] [Google Scholar]
  37. Umezawa H., Maeda K., Takeuchi T., Okami Y. New antibiotics, bleomycin A and B. J Antibiot (Tokyo) 1966 Sep;19(5):200–209. [PubMed] [Google Scholar]
  38. Van Rinsum J., Klis F. M., van den Ende H. Cell wall glucomannoproteins of Saccharomyces cerevisiae mnn9. Yeast. 1991 Oct;7(7):717–726. doi: 10.1002/yea.320070707. [DOI] [PubMed] [Google Scholar]
  39. Zlotnik H., Fernandez M. P., Bowers B., Cabib E. Saccharomyces cerevisiae mannoproteins form an external cell wall layer that determines wall porosity. J Bacteriol. 1984 Sep;159(3):1018–1026. doi: 10.1128/jb.159.3.1018-1026.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. de Nobel H., Lipke P. N. Is there a role for GPIs in yeast cell-wall assembly? Trends Cell Biol. 1994 Feb;4(2):42–45. doi: 10.1016/0962-8924(94)90003-5. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES