Abstract
Pseudomonas pseudoalcaligenes JS45 grows on nitrobenzene as a sole source of carbon, nitrogen, and energy. The catabolic pathway involves reduction to hydroxylaminobenzene followed by rearrangement to o-amino-phenol and ring fission (S. F. Nishino and J. C. Spain, Appl. Environ. Microbiol. 59:2520, 1993). A nitrobenzene-inducible, oxygen-insensitive nitroreductase was purified from extracts of JS45 by ammonium sulfate precipitation followed by anion-exchange and gel filtration chromatography. A single 33-kDa polypeptide was detected by denaturing gel electrophoresis. The size of the native protein was estimated to be 30 kDa by gel filtration. The enzyme is a flavoprotein with a tightly bound flavin mononucleotide cofactor in a ratio of 2 mol of flavin per mol of protein. The Km for nitrobenzene is 5 microM at an initial NADPH concentration of 0.5 mM. The Km for NADPH at an initial nitrobenzene concentration of 0.1 mM is 183 microM. Nitrosobenzene was not detected as an intermediate of nitrobenzene reduction, but nitrosobenzene is a substrate for the enzyme, and the specific activity for nitrosobenzene is higher than that for nitrobenzene. These results suggest that nitrosobenzene is formed but is immediately reduced to hydroxylaminobenzene. Hydroxylaminobenzene was the only product detected after incubation of the purified enzyme with nitrobenzene and NADPH. Hydroxylaminobenzene does not serve as a substrate for further reduction by this enzyme. The products and intermediates are consistent with two two-electron reductions of the parent compound. Furthermore, the low Km and the inducible control of enzyme synthesis suggest that nitrobenzene is the physiological substrate for this enzyme.
Full Text
The Full Text of this article is available as a PDF (206.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anlezark G. M., Melton R. G., Sherwood R. F., Coles B., Friedlos F., Knox R. J. The bioactivation of 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB1954)--I. Purification and properties of a nitroreductase enzyme from Escherichia coli--a potential enzyme for antibody-directed enzyme prodrug therapy (ADEPT). Biochem Pharmacol. 1992 Dec 15;44(12):2289–2295. doi: 10.1016/0006-2952(92)90671-5. [DOI] [PubMed] [Google Scholar]
- Baldwin J. E., Dreisbach J. H., Veca A. Biosynthetic preparation of [riboflavin-2-14C]flavin adenine dinucleotide using Clostridium kluyveri. Prep Biochem. 1990;20(2):179–185. doi: 10.1080/00327489008050188. [DOI] [PubMed] [Google Scholar]
- Blasco R., Castillo F. Characterization of a nitrophenol reductase from the phototrophic bacterium Rhodobacter capsulatus E1F1. Appl Environ Microbiol. 1993 Jun;59(6):1774–1778. doi: 10.1128/aem.59.6.1774-1778.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bruhn C., Lenke H., Knackmuss H. J. Nitrosubstituted aromatic compounds as nitrogen source for bacteria. Appl Environ Microbiol. 1987 Jan;53(1):208–210. doi: 10.1128/aem.53.1.208-210.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bryant C., DeLuca M. Purification and characterization of an oxygen-insensitive NAD(P)H nitroreductase from Enterobacter cloacae. J Biol Chem. 1991 Mar 5;266(7):4119–4125. [PubMed] [Google Scholar]
- Bryant D. W., McCalla D. R., Leeksma M., Laneuville P. Type I nitroreductases of Escherichia coli. Can J Microbiol. 1981 Jan;27(1):81–86. doi: 10.1139/m81-013. [DOI] [PubMed] [Google Scholar]
- CARTWRIGHT N. J., CAIN R. B. Bacterial degradation of the nitrobenzoic acids. 2. Reduction of the nitro group. Biochem J. 1959 Oct;73:305–314. doi: 10.1042/bj0730305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doi T., Yoshimura H., Tatsumi K. Properties of nitrofuran reductases from Escherichia coli B/r. Chem Pharm Bull (Tokyo) 1983 Mar;31(3):1105–1107. doi: 10.1248/cpb.31.1105. [DOI] [PubMed] [Google Scholar]
- Ghisla S., Massey V. Mechanisms of flavoprotein-catalyzed reactions. Eur J Biochem. 1989 Apr 15;181(1):1–17. doi: 10.1111/j.1432-1033.1989.tb14688.x. [DOI] [PubMed] [Google Scholar]
- Groenewegen P. E., Breeuwer P., van Helvoort J. M., Langenhoff A. A., de Vries F. P., de Bont J. A. Novel degradative pathway of 4-nitrobenzoate in Comamonas acidovorans NBA-10. J Gen Microbiol. 1992 Aug;138(Pt 8):1599–1605. doi: 10.1099/00221287-138-8-1599. [DOI] [PubMed] [Google Scholar]
- Hallas L. E., Alexander M. Microbial transformation of nitroaromatic compounds in sewage effluent. Appl Environ Microbiol. 1983 Apr;45(4):1234–1241. doi: 10.1128/aem.45.4.1234-1241.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kedderis G. L., Argenbright L. S., Miwa G. T. Mechanism of reductive activation of a 5-nitroimidazole by flavoproteins: model studies with dithionite. Arch Biochem Biophys. 1988 Apr;262(1):40–48. doi: 10.1016/0003-9861(88)90166-x. [DOI] [PubMed] [Google Scholar]
- Kinouchi T., Ohnishi Y. Purification and characterization of 1-nitropyrene nitroreductases from Bacteroides fragilis. Appl Environ Microbiol. 1983 Sep;46(3):596–604. doi: 10.1128/aem.46.3.596-604.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- MARTINEZ L. M., SAZ A. K. Enzymatic basis of resistance to aureomycin. I. Differences between flavoprotein nitro reductases of sensitive and resistant Escherichia coli. J Biol Chem. 1956 Nov;223(1):285–292. [PubMed] [Google Scholar]
- McCormick N. G., Feeherry F. E., Levinson H. S. Microbial transformation of 2,4,6-trinitrotoluene and other nitroaromatic compounds. Appl Environ Microbiol. 1976 Jun;31(6):949–958. doi: 10.1128/aem.31.6.949-958.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCoy E. C., Rosenkranz H. S., Howard P. C. Salmonella typhimurium TA100Tn5-1012, a strain deficient in arylhydroxylamine O-esterificase, exhibits a reduced nitroreductase activity. Mutat Res. 1990 Feb;243(2):141–144. doi: 10.1016/0165-7992(90)90036-j. [DOI] [PubMed] [Google Scholar]
- Narai N., Kitamura S., Tatsumi K. A comparative study on 1-nitropyrene and nitrofurazone reductases in Escherichia coli. J Pharmacobiodyn. 1984 Jun;7(6):407–413. doi: 10.1248/bpb1978.7.407. [DOI] [PubMed] [Google Scholar]
- Nishino S. F., Spain J. C. Degradation of nitrobenzene by a Pseudomonas pseudoalcaligenes. Appl Environ Microbiol. 1993 Aug;59(8):2520–2525. doi: 10.1128/aem.59.8.2520-2525.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- OTSUKA S. Studies on nitro-reducing enzymes of swine liver. Properties and cofactor requirements of nitro- and nitro-soreductases. J Biochem. 1961 Aug;50:85–94. doi: 10.1093/oxfordjournals.jbchem.a127427. [DOI] [PubMed] [Google Scholar]
- Peterson F. J., Mason R. P., Hovsepian J., Holtzman J. L. Oxygen-sensitive and -insensitive nitroreduction by Escherichia coli and rat hepatic microsomes. J Biol Chem. 1979 May 25;254(10):4009–4014. [PubMed] [Google Scholar]
- Rafil F., Franklin W., Heflich R. H., Cerniglia C. E. Reduction of nitroaromatic compounds by anaerobic bacteria isolated from the human gastrointestinal tract. Appl Environ Microbiol. 1991 Apr;57(4):962–968. doi: 10.1128/aem.57.4.962-968.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SAZ A. K., SLIE R. B. Reversal of aureomycin inhibition of bacterial cell-free nitro reductase by manganese. J Biol Chem. 1954 Sep;210(1):407–412. [PubMed] [Google Scholar]
- SAZ A. K., SLIE R. B. The inhibition of organiz nitro reductase by aureomycin in cell-free extracts. II. Cofactor requirements for the nitro reductase enzyme complex. Arch Biochem Biophys. 1954 Jul;51(1):5–16. doi: 10.1016/0003-9861(54)90447-6. [DOI] [PubMed] [Google Scholar]
- Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
- Tatsumi K., Doi T., Yoshimura H., Koga H., Horiuchi T. Oxygen--insensitive nitrofuran reductases in Salmonella typhimurium TA100. J Pharmacobiodyn. 1982 Jun;5(6):423–429. doi: 10.1248/bpb1978.5.423. [DOI] [PubMed] [Google Scholar]
- VILLANUEVA J. R. THE PURIFICATION OF A NITRO-REDUCTASE OF NOCARDIA V. J Biol Chem. 1964 Mar;239:773–776. [PubMed] [Google Scholar]
- Vorbeck C., Lenke H., Fischer P., Knackmuss H. J. Identification of a hydride-Meisenheimer complex as a metabolite of 2,4,6-trinitrotoluene by a Mycobacterium strain. J Bacteriol. 1994 Feb;176(3):932–934. doi: 10.1128/jb.176.3.932-934.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watanabe M., Ishidate M., Jr, Nohmi T. A sensitive method for the detection of mutagenic nitroarenes: construction of nitroreductase-overproducing derivatives of Salmonella typhimurium strains TA98 and TA100. Mutat Res. 1989 Aug;216(4):211–220. doi: 10.1016/0165-1161(89)90007-1. [DOI] [PubMed] [Google Scholar]
- Watanabe M., Ishidate M., Jr, Nohmi T. Nucleotide sequence of Salmonella typhimurium nitroreductase gene. Nucleic Acids Res. 1990 Feb 25;18(4):1059–1059. doi: 10.1093/nar/18.4.1059. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Won W. D., Heckly R. J., Glover D. J., Hoffsommer J. C. Metabolic disposition of 2,4,6-trinitrotoluene. Appl Microbiol. 1974 Mar;27(3):513–516. doi: 10.1128/am.27.3.513-516.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]