Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Jul;177(13):3890–3893. doi: 10.1128/jb.177.13.3890-3893.1995

Cellular localization of the Escherichia coli SpoT protein.

D R Gentry 1, M Cashel 1
PMCID: PMC177113  PMID: 7601859

Abstract

The SpoT protein of Escherichia coli serves as a source of degradation as well as an apparent source of synthesis of (p)ppGpp. Since the subcellular localization of SpoT might be a clue to its function, we have used SpoT-specific antisera to analyze cell extracts fractionated on sucrose gradients. We find that the SpoT protein is not bound to ribosomes or to either inner or outer membrane fractions. Although the SpoT protein is found in large aggregates, its localization is probably cytosolic.

Full Text

The Full Text of this article is available as a PDF (251.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. An G., Justesen J., Watson R. J., Friesen J. D. Cloning the spoT gene of Escherichia coli: identification of the spoT gene product. J Bacteriol. 1979 Mar;137(3):1100–1110. doi: 10.1128/jb.137.3.1100-1110.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Gallant J., Margason G., Finch B. On the turnover of ppGpp in Escherichia coli. J Biol Chem. 1972 Oct 10;247(19):6055–6058. [PubMed] [Google Scholar]
  3. Gentry D. R., Hernandez V. J., Nguyen L. H., Jensen D. B., Cashel M. Synthesis of the stationary-phase sigma factor sigma s is positively regulated by ppGpp. J Bacteriol. 1993 Dec;175(24):7982–7989. doi: 10.1128/jb.175.24.7982-7989.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Goldman E., Jakubowski H. Uncharged tRNA, protein synthesis, and the bacterial stringent response. Mol Microbiol. 1990 Dec;4(12):2035–2040. doi: 10.1111/j.1365-2958.1990.tb00563.x. [DOI] [PubMed] [Google Scholar]
  5. Hare J. F., Olden K., Kennedy E. P. Heterogeneity of membrane vesicles from Escherichia coli and their subfractionation with antibody to ATPase. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4843–4846. doi: 10.1073/pnas.71.12.4843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Harshman R. B., Yamazaki H. MSI accumulation induced by sodium chloride. Biochemistry. 1972 Feb 15;11(4):615–618. doi: 10.1021/bi00754a023. [DOI] [PubMed] [Google Scholar]
  7. Haseltine W. A., Block R., Gilbert W., Weber K. MSI and MSII made on ribosome in idling step of protein synthesis. Nature. 1972 Aug 18;238(5364):381–384. doi: 10.1038/238381a0. [DOI] [PubMed] [Google Scholar]
  8. Haseltine W. A., Block R. Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes. Proc Natl Acad Sci U S A. 1973 May;70(5):1564–1568. doi: 10.1073/pnas.70.5.1564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Heinemeyer E. A., Richter D. Characterization of the guanosine 5'-triphosphate 3'-diphosphate and guanosine 5'-diphosphate 3'-diphosphate degradation reaction catalyzed by a specific pyrophosphorylase from Escherichia coli. Biochemistry. 1978 Dec 12;17(25):5368–5372. doi: 10.1021/bi00618a007. [DOI] [PubMed] [Google Scholar]
  10. Heinemeyer E. A., Richter D. In vitro degradation of guanosine tetraphosphate (ppGpp) by an enzyme associated with the ribosomal fraction from Escherichia coli. FEBS Lett. 1977 Dec 15;84(2):357–361. doi: 10.1016/0014-5793(77)80724-2. [DOI] [PubMed] [Google Scholar]
  11. Irr J. D. Control of nucleotide metabolism and ribosomal ribonucleic acid synthesis during nitrogen starvation of Escherichia coli. J Bacteriol. 1972 May;110(2):554–561. doi: 10.1128/jb.110.2.554-561.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lazzarini R. A., Cashel M., Gallant J. On the regulation of guanosine tetraphosphate levels in stringent and relaxed strains of Escherichia coli. J Biol Chem. 1971 Jul 25;246(14):4381–4385. [PubMed] [Google Scholar]
  13. Metzger S., Sarubbi E., Glaser G., Cashel M. Protein sequences encoded by the relA and the spoT genes of Escherichia coli are interrelated. J Biol Chem. 1989 Jun 5;264(16):9122–9125. [PubMed] [Google Scholar]
  14. Metzger S., Schreiber G., Aizenman E., Cashel M., Glaser G. Characterization of the relA1 mutation and a comparison of relA1 with new relA null alleles in Escherichia coli. J Biol Chem. 1989 Dec 15;264(35):21146–21152. [PubMed] [Google Scholar]
  15. Mitchell J. J., Lucas-Lenard J. M. The effect of alcohols on guanosine 5'-diphosphate-3'-diphosphate metabolism in stringent and relaxed Escherichia coli. J Biol Chem. 1980 Jul 10;255(13):6307–6313. [PubMed] [Google Scholar]
  16. Osborn M. J., Munson R. Separation of the inner (cytoplasmic) and outer membranes of Gram-negative bacteria. Methods Enzymol. 1974;31:642–653. doi: 10.1016/0076-6879(74)31070-1. [DOI] [PubMed] [Google Scholar]
  17. Pedersen F. S., Lund E., Kjeldgaard N. O. Codon specific, tRNA dependent in vitro synthesis of ppGpp and pppGpp. Nat New Biol. 1973 May 2;243(122):13–15. [PubMed] [Google Scholar]
  18. Ramagopal S., Davis B. D. Localization of the stringent protein of Escherichia coli on the 50S ribosomal subunit. Proc Natl Acad Sci U S A. 1974 Mar;71(3):820–824. doi: 10.1073/pnas.71.3.820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Raué H. A., Cashel M. Regulation of RNA synthesis in Escherichia coli. III. Degradation of guanosine 5'-diphosphate 3'-diphosphate in cold-shocked cells. Biochim Biophys Acta. 1975 Mar 21;383(3):290–304. [PubMed] [Google Scholar]
  20. Richter D., Fehr S., Harder R. The guanosine 3',5'-bis(diphosphate) (ppGpp) cycle. Comparison of synthesis and degradation of guanosine 3',5'-bis(diphosphate) in various bacterial systems. Eur J Biochem. 1979 Aug 15;99(1):57–64. doi: 10.1111/j.1432-1033.1979.tb13230.x. [DOI] [PubMed] [Google Scholar]
  21. Richter D. Uncharged tRNA inhibits guanosine 3',5'-bis (diphosphate) 3'-pyrophosphohydrolase [ppGppase], the spoT gene product, from Escherichia coli. Mol Gen Genet. 1980;178(2):325–327. doi: 10.1007/BF00270479. [DOI] [PubMed] [Google Scholar]
  22. Seyfzadeh M., Keener J., Nomura M. spoT-dependent accumulation of guanosine tetraphosphate in response to fatty acid starvation in Escherichia coli. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11004–11008. doi: 10.1073/pnas.90.23.11004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sy J. Activation of ppGpp-3'-pyrophosphohydrolase by a supernatant factor and ATP. J Biol Chem. 1980 Nov 10;255(21):10056–10059. [PubMed] [Google Scholar]
  24. Sy J. In vitro degradation of guanosine 5'-diphosphate, 3'-diphosphate. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5529–5533. doi: 10.1073/pnas.74.12.5529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sy J. Reversibility of the pyrophosphoryl transfer from ATP to GTP by Escherichia coli stringent factor. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3470–3473. doi: 10.1073/pnas.71.9.3470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tétu C., Dassa E., Boquet P. L. The energy-dependent degradation of guanosine 5'-diphosphate 3'-diphosphate in Escherichia coli. Lack of correlation with ATP levels in vivo and role of the transmembrane proton gradient. Eur J Biochem. 1980 Jan;103(1):117–124. doi: 10.1111/j.1432-1033.1980.tb04295.x. [DOI] [PubMed] [Google Scholar]
  27. Xiao H., Kalman M., Ikehara K., Zemel S., Glaser G., Cashel M. Residual guanosine 3',5'-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J Biol Chem. 1991 Mar 25;266(9):5980–5990. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES