Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Jul;177(14):3953–3959. doi: 10.1128/jb.177.14.3953-3959.1995

Identification of carboxylation enzymes and characterization of a novel four-subunit pyruvate:flavodoxin oxidoreductase from Helicobacter pylori.

N J Hughes 1, P A Chalk 1, C L Clayton 1, D J Kelly 1
PMCID: PMC177123  PMID: 7608066

Abstract

The enzyme activities responsible for carboxylation reactions in cell extracts of the gastric pathogen Helicobacter pylori have been studied by H14CO3- fixation and spectrophotometric assays. Acetyl coenzyme A carboxylase (EC 6.4.1.2) and malic enzyme (EC 1.1.1.40) activities were detected, whereas pyruvate carboxylase (EC 6.4.1.1), phosphoenolpyruvate carboxylase (EC 4.1.3.1) and phosphoenolpyruvate carboxykinase (EC 4.1.1.49) activities were absent. However, a pyruvate-dependent, ATP-independent, and avidin-insensitive H14CO3- fixation activity, which was shown to be due to the isotope exchange reaction of pyruvate:flavodoxin oxidoreductase (EC 1.2.7.1), was present. The purified enzyme is composed of four subunits of 47, 36, 24, and 14 kDa. N-terminal sequence analysis showed that this enzyme is related to a recently recognized group of four-subunit pyruvate:ferredoxin oxidoreductases previously known only from hyperthermophiles. This enzyme from H. pylori was found to mediate the reduction of a number of artificial electron acceptors in addition to a flavodoxin isolated from H. pylori extracts, which is likely to be the in vivo electron acceptor. Indirect evidence that the enzyme is capable of in vitro reduction of the anti-H. pylori drug metronidazole was also obtained.

Full Text

The Full Text of this article is available as a PDF (359.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bauer C. C., Scappino L., Haselkorn R. Growth of the cyanobacterium Anabaena on molecular nitrogen: NifJ is required when iron is limited. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8812–8816. doi: 10.1073/pnas.90.19.8812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blamey J. M., Adams M. W. Characterization of an ancestral type of pyruvate ferredoxin oxidoreductase from the hyperthermophilic bacterium, Thermotoga maritima. Biochemistry. 1994 Feb 1;33(4):1000–1007. doi: 10.1021/bi00170a019. [DOI] [PubMed] [Google Scholar]
  3. Blamey J. M., Adams M. W. Purification and characterization of pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus. Biochim Biophys Acta. 1993 Jan 15;1161(1):19–27. doi: 10.1016/0167-4838(93)90190-3. [DOI] [PubMed] [Google Scholar]
  4. Brostedt E., Nordlund S. Purification and partial characterization of a pyruvate oxidoreductase from the photosynthetic bacterium Rhodospirillum rubrum grown under nitrogen-fixing conditions. Biochem J. 1991 Oct 1;279(Pt 1):155–158. doi: 10.1042/bj2790155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cannon M., Cannon F., Buchanan-Wollaston V., Ally D., Ally A., Beynon J. The nucleotide sequence of the nifJ gene of Klebsiella pneumoniae. Nucleic Acids Res. 1988 Dec 9;16(23):11379–11379. doi: 10.1093/nar/16.23.11379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chalk P. A., Roberts A. D., Blows W. M. Metabolism of pyruvate and glucose by intact cells of Helicobacter pylori studied by 13C NMR spectroscopy. Microbiology. 1994 Aug;140(Pt 8):2085–2092. doi: 10.1099/13500872-140-8-2085. [DOI] [PubMed] [Google Scholar]
  7. Cohen N. D., Duc J. A., Beegen H., Utter M. F. Quaternary structure of pyruvate carboxylase from Pseudomonas citronellolis. J Biol Chem. 1979 Sep 25;254(18):9262–9269. [PubMed] [Google Scholar]
  8. Cover T. L., Cao P., Murthy U. K., Sipple M. S., Blaser M. J. Serum neutralizing antibody response to the vacuolating cytotoxin of Helicobacter pylori. J Clin Invest. 1992 Sep;90(3):913–918. doi: 10.1172/JCI115967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cox D. L., Baugh C. L. Carboxylation of phosphoenolpyruvate by extracts of Neisseria gonorrhoeae. J Bacteriol. 1977 Jan;129(1):202–206. doi: 10.1128/jb.129.1.202-206.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Crabtree J. E., Figura N., Taylor J. D., Bugnoli M., Armellini D., Tompkins D. S. Expression of 120 kilodalton protein and cytotoxicity in Helicobacter pylori. J Clin Pathol. 1992 Aug;45(8):733–734. doi: 10.1136/jcp.45.8.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dewhirst F. E., Seymour C., Fraser G. J., Paster B. J., Fox J. G. Phylogeny of Helicobacter isolates from bird and swine feces and description of Helicobacter pametensis sp. nov. Int J Syst Bacteriol. 1994 Jul;44(3):553–560. doi: 10.1099/00207713-44-3-553. [DOI] [PubMed] [Google Scholar]
  12. Dooley C. P., Cohen H. The clinical significance of Campylobacter pylori. Ann Intern Med. 1988 Jan;108(1):70–79. doi: 10.7326/0003-4819-108-1-70. [DOI] [PubMed] [Google Scholar]
  13. Dunn B. E., Campbell G. P., Perez-Perez G. I., Blaser M. J. Purification and characterization of urease from Helicobacter pylori. J Biol Chem. 1990 Jun 5;265(16):9464–9469. [PubMed] [Google Scholar]
  14. Edwards D. I. Nitroimidazole drugs--action and resistance mechanisms. I. Mechanisms of action. J Antimicrob Chemother. 1993 Jan;31(1):9–20. doi: 10.1093/jac/31.1.9. [DOI] [PubMed] [Google Scholar]
  15. Fox J. G., Dewhirst F. E., Tully J. G., Paster B. J., Yan L., Taylor N. S., Collins M. J., Jr, Gorelick P. L., Ward J. M. Helicobacter hepaticus sp. nov., a microaerophilic bacterium isolated from livers and intestinal mucosal scrapings from mice. J Clin Microbiol. 1994 May;32(5):1238–1245. doi: 10.1128/jcm.32.5.1238-1245.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Graham D. Y., Lew G. M., Klein P. D., Evans D. G., Evans D. J., Jr, Saeed Z. A., Malaty H. M. Effect of treatment of Helicobacter pylori infection on the long-term recurrence of gastric or duodenal ulcer. A randomized, controlled study. Ann Intern Med. 1992 May 1;116(9):705–708. doi: 10.7326/0003-4819-116-9-705. [DOI] [PubMed] [Google Scholar]
  17. Hessey S. J., Spencer J., Wyatt J. I., Sobala G., Rathbone B. J., Axon A. T., Dixon M. F. Bacterial adhesion and disease activity in Helicobacter associated chronic gastritis. Gut. 1990 Feb;31(2):134–138. doi: 10.1136/gut.31.2.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jenal U., Rechsteiner T., Tan P. Y., Bühlmann E., Meile L., Leisinger T. Isoleucyl-tRNA synthetase of Methanobacterium thermoautotrophicum Marburg. Cloning of the gene, nucleotide sequence, and localization of a base change conferring resistance to pseudomonic acid. J Biol Chem. 1991 Jun 5;266(16):10570–10577. [PubMed] [Google Scholar]
  19. Jiang S. J., Liu W. Z., Zhang D. Z., Shi Y., Xiao S. D., Zhang Z. H., Lu D. Y. Campylobacter-like organisms in chronic gastritis, peptic ulcer, and gastric carcinoma. Scand J Gastroenterol. 1987 Jun;22(5):553–558. doi: 10.3109/00365528708991897. [DOI] [PubMed] [Google Scholar]
  20. Kapke P. A., Brown A. T., Lillich T. T. Carbon dioxide metabolism by Capnocytophaga ochracea: identification, characterization, and regulation of a phosphoenolpyruvate carboxykinase. Infect Immun. 1980 Mar;27(3):756–766. doi: 10.1128/iai.27.3.756-766.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kerscher L., Oesterhelt D. Purification and properties of two 2-oxoacid:ferredoxin oxidoreductases from Halobacterium halobium. Eur J Biochem. 1981 Jun 1;116(3):587–594. doi: 10.1111/j.1432-1033.1981.tb05376.x. [DOI] [PubMed] [Google Scholar]
  22. Kreutzer R., Singh M., Klingmüller W. Identification and characterization of the nifH and nifJ promoter regions located on the nif-plasmid pEA3 of Enterobacter agglomerans 333. Gene. 1989 May 15;78(1):101–109. doi: 10.1016/0378-1119(89)90318-1. [DOI] [PubMed] [Google Scholar]
  23. Kunow J., Linder D., Thauer R. K. Pyruvate: ferredoxin oxidoreductase from the sulfate-reducing Archaeoglobus fulgidus: molecular composition, catalytic properties, and sequence alignments. Arch Microbiol. 1995 Jan;163(1):21–28. doi: 10.1007/BF00262199. [DOI] [PubMed] [Google Scholar]
  24. Langton S. R., Cesareo S. D. Helicobacter pylori associated phospholipase A2 activity: a factor in peptic ulcer production? J Clin Pathol. 1992 Mar;45(3):221–224. doi: 10.1136/jcp.45.3.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lim F., Morris C. P., Occhiodoro F., Wallace J. C. Sequence and domain structure of yeast pyruvate carboxylase. J Biol Chem. 1988 Aug 15;263(23):11493–11497. [PubMed] [Google Scholar]
  26. MacLeod M. N., DeVoe I. W. Localization of carbonic anhydrase in the cytoplasmic membrane of Neisseria sicca (strain 19). Can J Microbiol. 1981 Jan;27(1):87–92. doi: 10.1139/m81-014. [DOI] [PubMed] [Google Scholar]
  27. Meinecke B., Bertram J., Gottschalk G. Purification and characterization of the pyruvate-ferredoxin oxidoreductase from Clostridium acetobutylicum. Arch Microbiol. 1989;152(3):244–250. doi: 10.1007/BF00409658. [DOI] [PubMed] [Google Scholar]
  28. Mendz G. L., Hazell S. L., Burns B. P. Glucose utilization and lactate production by Helicobacter pylori. J Gen Microbiol. 1993 Dec;139(12):3023–3028. doi: 10.1099/00221287-139-12-3023. [DOI] [PubMed] [Google Scholar]
  29. Mendz G. L., Hazell S. L., Burns B. P. The Entner-Doudoroff pathway in Helicobacter pylori. Arch Biochem Biophys. 1994 Aug 1;312(2):349–356. doi: 10.1006/abbi.1994.1319. [DOI] [PubMed] [Google Scholar]
  30. Mendz G. L., Hazell S. L. Fumarate catabolism in Helicobacter pylori. Biochem Mol Biol Int. 1993 Oct;31(2):325–332. [PubMed] [Google Scholar]
  31. Mendz G. L., Hazell S. L. Glucose phosphorylation in Helicobacter pylori. Arch Biochem Biophys. 1993 Jan;300(1):522–525. doi: 10.1006/abbi.1993.1071. [DOI] [PubMed] [Google Scholar]
  32. Mégraud F., Neman-Simha V., Brügmann D. Further evidence of the toxic effect of ammonia produced by Helicobacter pylori urease on human epithelial cells. Infect Immun. 1992 May;60(5):1858–1863. doi: 10.1128/iai.60.5.1858-1863.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. O'Rourke J., Lee A., Fox J. G. An ultrastructural study of Helicobacter mustelae and evidence of a specific association with gastric mucosa. J Med Microbiol. 1992 Jun;36(6):420–427. doi: 10.1099/00222615-36-6-420. [DOI] [PubMed] [Google Scholar]
  34. Parsonnet J., Friedman G. D., Vandersteen D. P., Chang Y., Vogelman J. H., Orentreich N., Sibley R. K. Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med. 1991 Oct 17;325(16):1127–1131. doi: 10.1056/NEJM199110173251603. [DOI] [PubMed] [Google Scholar]
  35. Plaga W., Lottspeich F., Oesterhelt D. Improved purification, crystallization and primary structure of pyruvate:ferredoxin oxidoreductase from Halobacterium halobium. Eur J Biochem. 1992 Apr 1;205(1):391–397. doi: 10.1111/j.1432-1033.1992.tb16792.x. [DOI] [PubMed] [Google Scholar]
  36. Raeburn S., Rabinowitz J. C. Pyruvate: ferredoxin oxidoreductase. I. The pyruvate-CO 2 exchange reaction. Arch Biochem Biophys. 1971 Sep;146(1):9–20. doi: 10.1016/s0003-9861(71)80036-x. [DOI] [PubMed] [Google Scholar]
  37. Rauws E. A., Tytgat G. N. Cure of duodenal ulcer associated with eradication of Helicobacter pylori. Lancet. 1990 May 26;335(8700):1233–1235. doi: 10.1016/0140-6736(90)91301-p. [DOI] [PubMed] [Google Scholar]
  38. Reynolds D. J., Penn C. W. Characteristics of Helicobacter pylori growth in a defined medium and determination of its amino acid requirements. Microbiology. 1994 Oct;140(Pt 10):2649–2656. doi: 10.1099/00221287-140-10-2649. [DOI] [PubMed] [Google Scholar]
  39. Schmitz O., Kentemich T., Zimmer W., Hundeshagen B., Bothe H. Identification of the nifJ gene coding for pyruvate: ferredoxin oxidoreductase in dinitrogen-fixing cyanobacteria. Arch Microbiol. 1993;160(1):62–67. [PubMed] [Google Scholar]
  40. Shah V. K., Stacey G., Brill W. J. Electron transport to nitrogenase. Purification and characterization of pyruvate:flavodoxin oxidoreductase. The nifJ gene product. J Biol Chem. 1983 Oct 10;258(19):12064–12068. [PubMed] [Google Scholar]
  41. Thorneley R. N. A convenient electrochemical preparation of reduced methyl viologen and a kinetic study of the reaction with oxygen using an anaerobic stopped-flow apparatus. Biochim Biophys Acta. 1974 Mar 26;333(3):487–496. doi: 10.1016/0005-2728(74)90133-9. [DOI] [PubMed] [Google Scholar]
  42. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet. 1983 Jun 4;1(8336):1273–1275. [PubMed] [Google Scholar]
  43. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet. 1983 Jun 4;1(8336):1273–1275. [PubMed] [Google Scholar]
  44. Williams K., Lowe P. N., Leadlay P. F. Purification and characterization of pyruvate: ferredoxin oxidoreductase from the anaerobic protozoon Trichomonas vaginalis. Biochem J. 1987 Sep 1;246(2):529–536. doi: 10.1042/bj2460529. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES